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Abstract 6 

The field of enthalpy relaxation is reviewed. Current phenomenologies for dealing with the 7 

nonlinear and nonexponential character of enthalpy relaxation are presented and their successes 8 

and shortcomings are discussed. Qualitative experimental data and quantitative parameterizations 9 

are summarized and some directions for future research are suggested. 10 
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1 Introduction  79 

This review summarizes developments in enthalpy relaxation in amorphous materials up 80 

to the end of 1992. The field is intimately associated with the glass transition and an abbreviated 81 

account of the glass transition phenomenon is included. However a comprehensive account of 82 

the glass transition as an independent field of scientific endeavor is not attempted. Excellent 83 

accounts of the glass transition and glassy state are available [1-5].  84 

The review is divided into seven sections. The introduction begins with some brief 85 

comments on nomenclature, followed by a summary of those aspects of linear response theory 86 

that provide a foundation for the nonlinear phenomenology of enthalpy relaxation, and a brief 87 

account of the kinetics of the glass transition. An account of experimental techniques is given in 88 

Section 2 with emphasis given to experimental difficulties that can affect data quality. 89 

Phenomenological equations for describing enthalpy relaxation are introduced in Section 3 and 90 

calculation procedures for implementing them are described in Section 4. Experimental results 91 

are summarized in Section 5 and enthalpy relaxation parameters are discussed in Section 6. A 92 

summary and some thoughts for future research are given in Section 7. 93 

 94 

1.1 Nomenclature 95 

 Many experiments described as enthalpy relaxation would be better described as enthalpy 96 

recovery because it is the enthalpy recovered during heating that is recorded and analyzed. 97 

Enthalpy is also a retardation function rather than a relaxation one (Section 1.2.2). To be 98 

consistent with entrenched usage in the literature, however, the terms enthalpy relaxation or 99 

simply relaxation will be used here in statements of a general nature. The more precise terms 100 

‘enthalpy recovery‘ and ‘retardation times’ are used where these are specifically appropriate. 101 

Relaxation in the glassy state is referred to in the literature as structural relaxation, physical 102 

aging, stabilization or annealing. The phrase ‘structural relaxation’ refers to inferred changes in 103 

atomic arrangement that occur during relaxation, although these are not known in any detail for 104 

most materials. The term ‘physical aging’ was introduced by Struik [6] to distinguish relaxation 105 

effects from those produced by chemical reactions, degradation or changes in crystallinity. The 106 

variety of terminologies reflects the considerable practical importance of glassy state relaxation 107 

to both inorganic and organic high polymer glass science and technology. We choose the term 108 

structural relaxation here and refer to relaxation in the glassy state as annealing. Annealing time 109 

and temperature are written as ta and Ta respectively. For convenience the supercooled liquid or 110 

rubbery state above the glass transition temperature range is referred to as the equilibrium state 111 

to distinguish it from the nonequilibrium glassy state, even though supercooled liquids and some 112 

rubbers are metastable with respect to the crystalline state (except for most atactic polymers). 113 

Differential scanning calorimetry is referred to as DSC.  114 

The thermodynamic or ideal glass temperature at which excess properties such as 115 

entropy vanish is referred to in the literature as 0T  (introduced by Fulcher), T  (introduced by 116 

Vogel and also used by Tamman and Hesse), 2T  (introduced by Gibbs and DiMarzio) and KT  117 

(identified by Kauzmann). Theoretical and experimental reasons can be given for believing that 118 

0T , 2T  and KT  are equal for several materials (discussed below) but this belief is not uniformly 119 

accepted. Here, 0T  denotes the adjustable parameter in the empirical linear Vogel-Tamman-120 

Fulcher equation, 2T  is the temperature of zero excess entropy in theoretically derived nonlinear 121 

kinetic equations, and KT  is the thermodynamically determined Kauzmann temperature of zero 122 

excess entropy. Sets of subscripted variables or material parameters are enclosed in braces, e.g. 123 
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{Ti}. Braces are also used as the highest member in the hierarchy of parentheses, {[(...)]}. 124 

Average quantities are denoted by <... >. 125 

 126 

1.2 Kinetics of the Glass Transition 127 

1.2.1 General Aspects 128 

 The calorimetrically observed glass transition is a kinetic phenomenon and it is the 129 

kinetics of the transition with which enthalpy relaxation is concerned. The observed glass 130 

transition is essentially a Deborah number (DN) effect, named after the prophetess Deborah who 131 

declared that what appeared to mortals to be stationary, such as non-volcanic mountains and the 132 

size of the oceans, are not necessarily so to an eternal deity. The Deborah number is defined as 133 

the ratio of timescales of the observed and the observer, and the glass transition is seen when 134 

these two timescales for structural relaxation cross over and DN passes through unity. Thus the 135 

glass transition can be studied by changing the timescale of either the experimental probe or the 136 

system under study. The experimental timescale can be varied by changing either the frequency 137 

of an applied sinusoidal perturbation or the observation time for a time-dependent property. The 138 

timescale of structural relaxation can be controlled by temperature or pressure, or by various 139 

applied stresses if the system is nonlinear. In the temperature domain that is explored most 140 

thoroughly a DN of unity that defines an average glass transition temperature gT  can be 141 

expressed in terms of the rate of change of some characteristic timescale τ determined during 142 

cooling: 143 

2
1

eff

c

g

Hd d dT
DN Q

dt dT dt RT

 



    ,         (1) 144 

where effH  is the effective average activation energy at gT  defined as  ln 1/d d T  (e.g. eq. 145 

(5) below), R is the ideal gas constant and Qc is the cooling rate. The derivative /d dt  has also 146 

been termed the Lillie number by Cooper [7] and has been discussed by Cooper and Gupta [8] 147 

and Scherer [9]. Equating it to unity is implicit in earlier work however and has been used to 148 

estimate  gT  in terms of the activation energy and scan rate, for example in Ref. [10]. It will 149 

enter again into the discussion of the fictive temperature in Section 1.2.3. It is not advisable to 150 

define DN (and therefore gT ) in terms of the heating rate Qh alone because the kinetics of 151 

recovery are partly determined by the previous history, such as cooling rate (often not specified, 152 

a practice that is to be discouraged) and annealing. It can be shown from quite general 153 

arguments that gT increases in proportion to log Qc [9,11,12], but the value of /effH R  near gT  154 

is usually so large (typically several hundred kK) that gT  is defined to within a few K for 155 

cooling rates that vary over several orders of magnitude. Another definition of DN is 156 

DN / t             (2) 157 

where t  is some average time of observation. If t  is numerically equated to the inverse of 158 

Qc (i.e. 1KcQ   ) eqs. (1) and (2) are consistent only when the factor 2/eff gH RT  is of order 159 

unity. Such consistency is indeed found for a wide variety of glasses (Table 1) although there is 160 

a tendency for some inorganic glasses to have values of 
2/eff gH RT  closer to 0.1. The last 161 

observation is the source of the frequently quoted generalization that   210gT   s, since from 162 
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eq. (1)     2 / 1/ 10 / 60sg g eff c cT RT H Q Q      for a typical cooling rate of 10 K min-1. The 163 

quantity 2/eff gH RT  is equal to the KAHR parameter θ (Section 3.2.2). 164 

 In this review 
gT  is generally used to denote the temperature at which the heat capacity 165 

measured during heating reaches half of its ultimate increase through the glass transition region 166 

(the ‘midpoint’ definition frequently used in DSC scans). More specific definitions and 167 

additional nomenclature are introduced in the discussion of fictive temperature in Section 1.2.3. 168 

The average relaxation time at 
gT  for typical DSC scans depends on history and on how 

gT  is 169 

defined from DSC data. Calculations using the Tool-Narayanaswamy phenomenology (Section 170 

4.2) confirm the Lillie number analysis given above: for 10c hQ Q   K min-1,   210gT   s 171 

for the ‘onset’ definition of gT  (where the heat capacity first starts to rise above the glassy state 172 

background). This onset value is the temperature at which the tangent drawn through the 173 

inflection point in the middle of the transition intersects the extrapolated glass heat capacity. The 174 

‘onset’ and ‘midpoint’ definitions of gT  are illustrated in Fig. 1(A).  175 

 In the isobaric liquid or rubbery state above gT  where molecular motion is rapid 176 

compared with experimental observation times, the temperature dependence of the average 177 

relaxation time for many dynamic processes is given by the empirical Vogel-Tamman-Fulcher 178 

(VTF) equation [13-15] 179 

 0exp /A B T T     ,         (3) 180 

in which A, B and 0T  are positive constants. The VTF equation can be derived from the 181 

configurational entropy theory of Adam and Gibbs [16] (Section 3.2.3) and in terms of free 182 

volume. The free volume version is exemplified by the Williams-Landel-Ferry (WLF) equation 183 

[17] that is ubiquitous in the polymer literature. The WLF equation expresses 0T  as 2gT C  and 184 

defines a shift factor aT relative to some reference temperature (usually gT ): 185 

 

 
 1

2

exp
g

T

gg

C T TT
a

T T CT





 
   

   

.        (4) 186 

An extended discussion of the WLF equation is given in the classic book by Ferry [18], in 187 

which C1 and C2 are defined in terms of free volume. Ferry, and many others, have noted that 188 

eq. (3) is more objective than eq. (4) because the values of C1 and C2 depend on the choice of 189 

gT . Accordingly eq. (3) is used here in preference to eq. (4). The effective VTF activation 190 

energy is 191 

     

2

2 2

0 0

ln

1/ 1 /

effH d BT B

R d T T T T T


  

 
.       (5) 192 

The VTF equation can be fitted to data using reiterative linear least squares or nonlinear 193 

regression techniques. The parameters are usually correlated because changes in B can be partly 194 

compensated by changes in 0T . These changes can be estimated by exploiting the fact that 195 

effH  is tightly constrained by the data so that relative changes in B and 0T  can be determined 196 

from eq. (5). The WLF equation suffers the same problem, as does the extension of the VTF 197 

equation into the glassy state (Section 3.2.3). 198 

199 
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Table 1 200 

Tool-Narayanaswamy and KAHR Parameters 201 

Material 

 

* /h R  x    ln A  
g

T  */x h R    Ref 

 (kK)   (s) (K) (kK) K-1  

PVAc 71 0.35 0.57 224.5 310 25 0.74 [250] 

 71 0.41 0.51 223.6  29 0.74 [133] 

 88 0.27 0.51 277.5  24 0.92 [130] 

PS 80 0.46 0.71 216.0 373 37 0.58 [130,161] 

 70 0.48 - - 373 34 0.56 [91] 

 53-71 0.52 0.8 - 373 32 0.44 [153] 

 70-

110 

0.44 0.55 - 373 37 0.60 [246] 

PVC 225 0.10 0.23 622.0 353 23 1.74 [130] 

PBAPC 150 0.19 0.46 355.8 415 29 0.87 [130] 

aPMMA 138 0.19 0.35 357.8 375 26 0.98 [130] 

 150 0.20 0.35  375 21 0.75 [162] 

iPMMA 80 0.22 0.43  325 18 0.76 [162] 

sPMMA 135 0.20 0.35  395 27 0.87 [162] 

B2O3 45 0.40 0.65 75.6 335 18 0.16 [160] 

As2Se3 41 0.49 0.67 85.5 450 20 0.20 [257] 

5P2E 39 0.40 0.70 153.1 243 16 0.65 [42] 

NBS710a 74 0.44 0.63 82.8 840 33 0.105 [129,141] 

NBS711b 45 0.65 0.65 57.4 670 29 0.10 [260] 

ZBLA 168 0.23 0.43 289.9 580 39 0.50 [112,113,157] 

 165 0.19 0.50 282.6  31 0.50 [130] 

ZBLALiPb 124 0.23 0.53  510 28 0.48 [112] 

ZBLALi 132 0.30 0.55  520 40 0.49 [112] 

ZBLAN 112 0.35 0.56  535 39 0.39 [112] 

ZBL 184 0.27 0.54  570 50 0.57 [112] 

BZnYbTe 137 0.35 0.48  620 48 0.36 [112] 

LiAc 200 0.17 0.56 490.7 405 34 1.22 [133] 

Glycerol  26 0.29 0.51 490.7 190 7.5 0.73 [113] 

EG C (bulk) 12 0.49 0.64 81.5 140 5.9 0.61 [218] 

EG ° (gel) "  12 0.46 0.39 75.45 150 5.5 0.53 [218] 

LiCl ' (bulk)  12 0.68 0.93 82.1 145 8.2 0.57 [218] 

LiCl ° (gel)  12 0.67 0.39 70.53 155 8.0 0.50 [218] 

40Ca(NO3)-

60KNO3 

70 0.31 0.46 202.5 335 22 0.62 [258] 

 202 
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Table 1 (continued) 203 

 204 

Material 

 

* /h R  x    ln A  
g

T  */x h R    Ref 

24.4[yNa2O (1 - y)K2O]-

75.65SiO2 

49 0.70 0.66 62.8 750 34 0.087 [259] 

40AgI-60Ag2MoO4 77 0.50 - - 365 39 0.58 [245] 

50AgI-50Ag2MoO4 61 0.55 - - 345 34 0.51 [244] 

60AgI-40Ag2MoO4 43 0.65 - - 325 28 0.41 [245] 

75AgPO3-25Ag2MoO4 61 0.68 - - 539 41 0.21 [244] 

30AgI-52.5AgPO3-

17.5Ag2MoO4 

49 0.68 - - 471 33 0.22 [244] 

50AgI-37.5AgPO3-

12.5Ag2MoO4 

54 0.68 - - 418 37 0.31 [244] 

a Soda-lime-silicate 205 
b Lead silicate 206 
c Ethylene glycol (22 mol% in H2O) 207 
d Imbibed in poly(hydroxyethyl-methacrylate) 208 
e LiCl (16 mol% in H2O) 209 

 210 

Another expression for  T , deduced from mode coupling theory, is  211 

 ' / 1cA T T





            (6) 212 

where c gT T . It is difficult to distinguish between eqs. (3) and (6) for gT T . Their near 213 

equivalence arises from the ‘Bardeen identity’ discussed briefly by Anderson [19]: 214 

   
2

exp 1/ 2 / 0.13x e   .         (7) 215 

Equation (7) is accurate to within a few percent near 0.5x   so that for 02T T  eqs. (3) and (6) 216 

are essentially indistinguishable. However it is not possible to apply eq. (6) to enthalpy 217 

relaxation within and below the glass transition temperature range because it would have to be 218 

extrapolated through the singularity at cT T . The relevance of mode coupling theory to the 219 

glass transition has been questioned by Angell [20,21] and is discussed in the proceedings of an 220 

international discussion meeting [22]. 221 

 The glassy state below gT  is generally a nonequilibrium one [23] and glassy state 222 

relaxation results from the thermodynamic driving force towards (metastable) equilibrium. An 223 

early discussion of the glass transition and nonequilibrium glassy state was given by Simon 224 

[24]. Relaxation in the glassy state below gT  generally has an Arrhenius temperature 225 

dependence. Any theory or phenomenology must account for, or describe, the change from VTF 226 

behavior above gT  to Arrhenius behavior below gT . Secondary   relaxations do not affect the 227 

glassy heat capacity and there is no evidence that they directly influence enthalpy relaxation. 228 

However Goldstein [25,26] has argued that they can affect the change in heat capacity at gT  229 

because of the entropy associated with the corresponding degrees of freedom. 230 

231 
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232 
 233 

Fig. 1 (A) Definition of onset and midpoint values of gT  and of '

fT , for a heating rate 234 

comparable with or greater than the cooling rate. (B) Illustration of exothermic excursion below  235 

 236 

1.2.2 Nonexponentiality 237 

  Most relaxation processes in condensed matter are nonexponential and enthalpy 238 

relaxation is no exception. Nonexponentiality produces the memory effect which strongly 239 

influences enthalpy recovery after annealing. The memory effect is discussed below but first we 240 

consider some aspects of linear response theory for nonexponential decay functions and 241 

summarize the more common mathematical expressions used to describe them. 242 

 A nonexponential decay function  t  is mathematically equivalent to a distribution of 243 

relaxation or retardation times g(ln τ):  244 
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     ln exp / lng t d    




  ,         (8) 245 

 ln ln 1g d 




 .           (9) 246 

Because of this equivalence it is not possible, in the absence of independent experimental 247 

information, to determine if the essential physics lies in  t  or in g(ln τ). Averages of the 248 

relaxation or retardation time 
n  are defined by the moments of g(ln τ) and  t : 249 

   ln exp / lnn n g t d    




          (10)  250 

        
 

 1

0

1 nt t dt
n





  ,          (11) 251 

where Γ is the gamma function. In the frequency domain the corresponding expressions for the 252 

complex retardation function  *retR i  are 253 

     
1

* ln ln
1

ret U R U ret ret ret

ret

R i R R R g d
i

  






  






      (12) 254 

                               
0

/ expR UR R d dt i t dt 


   ,      (13) 255 

 where  
1/2

1i   , ω is the angular frequency,  'R   and  "R   are the real and imaginary 256 

components of  *retR i  respectively, RU is the unrelaxed (real) component of  *retR i  and 257 

RR is the relaxed component of  *retR i  (also real). 258 

 The value of RU corresponds to the limiting high frequency or short time response and 259 

RR is the limiting low frequency or long time response. For exponential decay functions 260 

 lnret retg   is a Dirac delta function  0ret     and  *ret UR i R   is proportional to 261 

 01/ 1 i . The quantity ret  in eq. (12) is subscripted as a retardation time because in the 262 

time domain it determines the rate of retardation as R increases from RU to RR  following a step 263 

perturbation: 264 

     1U R UR t R R R t      .         (14) 265 

In eq. (14) the response  R t  corresponds to the change in a measurable property  P t  266 

following an instantaneous increase (Heaviside function) in a forcing perturbation from 0 to F: 267 

    /R t P t F . In the frequency domain this is generalized to      * * / *R i P i F i   . 268 

Familiar examples of  *retR i  are the complex relative permittivity  * i   and the shear 269 

compliance  *J i  . A less familiar example is the complex isobaric heat capacity  *pC i  270 

discussed below. In this last case the forcing function is the temperature and the measured 271 

response is the enthalpy (or isobaric heat, see Section 2.2). Since the limiting high frequency 272 

(short time, low temperature, or glassy) heat capacity is less than the limiting low frequency 273 
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(long time, high temperature, liquid or rubber) heat capacity, the enthalpic τ is a retardation 274 

time. 275 

  If 
U RR R  the rate of relaxation of  R t  from 

UR  to 
RR  is determined by the relaxation 276 

time 
relax : 277 

     U U RR t R R R t            (15) 278 

and 279 

     * ln ln
1

relax
relax R U R relax relax relax

relax

i
R i R R R g d

i


  







  






.    (16) 280 

An example of *relaxR  is the shear modulus G*(iω) = 1/ J*(iω) . For properties that are the 281 

complex inverses of one another (such as *G  and *J ) specific relations exist between 282 

 lnrelax relaxg   and  lnret retg   [18]. 283 

 The distinction between relaxation and retardation times can be important for 284 

nonexponential decays because their average values differ substantially if the dispersion 285 

U RR R  is large. For G*(iω) and  J*(iω) for example, 286 

 /ret relax R U relaxJ J              (17) 287 

where the factor /R UJ J  increases with increasing nonexponentiality as 288 

2

2
1

relaxretR

U relax relax

J

J



 
   .          (18) 289 

For strongly nonexponential relaxations, or very broad distributions of relaxation times, the two 290 

moments of  lnrelax relaxg   in eq. (18) can differ by several orders of magnitude. The distinction 291 

between retardation and relaxation times also enters into any comparison between the 292 

characteristic times of different properties and it is important that a relaxation time for one 293 

property not be compared with a retardation time for another. For the rest of this review, 294 

however, we omit the subscripts with the understanding that we are discussing enthalpy 295 

retardation times. 296 

 An important consequence of nonexponentiality is the memory effect that arises from 297 

Boltzmann superposition of nonexponential response functions (as discussed by Goldstein [27] 298 

and others). The memory effect refers to the dependence of relaxation on the path by which the 299 

starting state was reached, i.e., the system ‘remembers’ its earlier history. The development of 300 

sub- gT  heat capacity peaks in some annealed glasses is due to the memory effect, for example. 301 

Another striking manifestation is the initial move away from equilibrium after two temperature 302 

steps of opposite sign, followed by the inevitable approach to equilibrium at long times. This 303 

results in a maximum in the departure from equilibrium, first observed for volume by Ritland 304 

[28] and Kovacs [29], and later by Hofer et al. [30] for enthalpy [31]. It is instructive to analyze 305 

these observations, the relevance of which to enthalpy recovery has been discussed by Hodge 306 

[32]. Consider a specific example of the thermal history just mentioned: a downward step in 307 

temperature from the equilibrium state at 0T  to Tl at time t1 followed by an upward step from T1 308 

to 2T  at time t2. Boltzmann superposition of the responses to these two temperature steps yields 309 

the time dependent enthalpy H(t): 310 
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   0 1 ,i i

i

H t H H t t                (19) 311 

       1 0 1 1 2 1 21 ,H H H t t H H t t                 (20) 312 

         1 0 1 2 1 2 2 1 21 ,H H H t t t t H H t t                     (21) 313 

where  iH  are the equilibrium enthalpies at temperatures  iT  and  iH  are the enthalpy 314 

changes corresponding to the temperature steps at times  it . If  t  is exponential and the 315 

retardation times at  iT  are  i  then 316 
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 
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   
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       (22) 317 

 
 

 
 2 1 2

2 0 1 2 1

1 2

exp exp
t t t t

H H H H H
 

      
          

     

.    (23) 318 

The expression in braces in eq. (23) is independent of time so that H(t) decays exponentially 319 

from its value at 2t t  with a retardation time 2  appropriate for the temperature 2T . Thus if an 320 

observer’s clock started at 2t t   there would be nothing in the subsequent behavior to indicate 321 

how the starting value was reached, i.e., the system would retain no ‘memory’ of the earlier 322 

temperature step at 1t t  . This occurs only when  t  is exponential because the 323 

transformation from eq. (22) to (23) depends on the relation 324 

       2 1 2 2 1 2t t t t t t t t          ,        (24) 325 

which is unique to the exponential function. 326 

 Another history that demonstrates the memory effect is exemplified in the ‘crossover’ 327 

experiment of Spinner and Napolitano [33]. A sample was equilibrated near gT , taken to a lower 328 

temperature, and annealed until the refractive index reached an arbitrary value equal to that of a 329 

sample equilibrated at temperature xT . The annealed sample was then placed in a furnace at 330 

temperature xT  and the refractive index monitored as a function of time. It was observed to pass 331 

through a minimum, corresponding to a maximum in the volume. Thus although the 332 

nonequilibrium annealed sample had a refractive index equal to a sample equilibrated at xT  the 333 

subsequent time dependence indicated that the nonequilibrium and equilibrated glasses had 334 

different structures. 335 

The memory effect can also be described in terms of the components of a distribution of 336 

retardation times. Although each component decays exponentially and exhibits no memory effect 337 

the overall departure from equilibrium at any time can be partitioned between the components in 338 

several ways, depending on the path by which the nonequilibrium state was reached, and these 339 

different partitionings will produce different relaxation behavior. 340 
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The memory effect is seen only if the response to the first temperature step still has a 341 

significant time dependence after the second step. This condition is not fulfilled for the two 342 

limiting cases of very small and very large values of  2 1 1/t t  . If  2 1t t  is very long and/or 343 

1  is very short then    1 2 0t t t t      and the response to the first temperature jump will 344 

have decayed to zero. On the other hand if  2 1t t  is very short and/or 
1  is very long then 345 

   1 2t t t t     and no term containing 
1t  will appear in eqs. (19) - (21). In both cases the 346 

effects of thermal history for 2t t  on subsequent relaxation is small. 347 

The memory effect occurs in any nonexponentially relaxing system regardless of 348 

(although modified by) any possible nonlinearity in the system, described next. 349 

 350 

1.2.3 Nonlinearity 351 

 In 1936 Lillie [34] reported a time dependent zero frequency viscosity  0 t  in 352 

inorganic glasses. Since the viscosity is proportional to the average stress relaxation time  353 

0 U relG              (25) 354 

where UG  is the (essentially time invariant) limiting high frequency modulus, Lillie’s 355 

observation is equivalent to a viscosity- and time- dependent rel  so that glassy relaxation is 356 

nonlinear. Viscosity is usually associated with structural relaxation in inorganic glasses (their 357 

activation energies are often the same), implying that structural relaxation is also nonlinear. 358 

Nonlinearity was confirmed in 1955 by Hara and Suetoshi [35] who found, for an equilibrated 359 

soda-lime-silicate glass subjected to temperature jumps of opposite sign and magnitude 2  K, 360 

that the form of the volume relaxation function depended on the sign of the temperature step: 361 

the approaches to equilibrium from above and below occurred at different rates. A similar 362 

asymmetric approach to volumetric equilibrium was observed in poly(vinyl acetate) (PVAc) by 363 

Kovacs [36]. These observations are independent of the memory effect and nonexponentiality 364 

because relaxation occurred from the equilibrium state. The dependence of ϕ(t) on the departure 365 

from equilibrium is equivalent to the structural relaxation kinetics depending on the time 366 

dependent structure of the relaxing system, so that in order to quantify nonlinearity it is 367 

necessary to specify the structural state mathematically. Two equivalent methods are in general 368 

use. 369 

 One measure of structure is the fictive temperature fT  introduced into the literature by 370 

Tool and Eichlin in 1931 [37] and Tool in 1946 [38] but presented orally in 1924 [39]. Thus 371 

nonlinearity was recognized more than 30 years before the memory effect was observed by 372 

Ritland [28] and Kovacs [29], and some 45 years before nonlinearity and nonexponentiality 373 

were first combined in a consistent way by Narayanaswamy [40,41]. This very early 374 

introduction of fT  indicates the considerable practical importance of nonlinearity to annealing 375 

behavior. Excellent discussions of the definition and use of fT  have been given by 376 

Narayanaswamy [41], Moynihan et al. [42] and Scherer [9]. The definition of fT  for enthalpy is 377 

     ' '

fT

e f pg

T

H T H T C T dT           (26) 378 
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where  e fH T  is the equilibrium value of H at temperature 
fT  and  pgC T  is the nonstructural, 379 

unrelaxed, glassy state heat capacity. The equilibrium state is defined by the condition 
fT T  in 380 

addition to the general requirement of time invariance / 0fdT dt  . The value of 
fT  defined by 381 

eq. (26) corresponds to the temperature of intersection of the equilibrium 
eH T  curve with a 382 

line drawn parallel to the glassy gH T  curve and passing through the  ,H T  point of interest. 383 

This construction is shown in Fig. 2, which also illustrates how 
fT  is the relaxational part of the 384 

enthalpy expressed in temperature units. The structural contribution to the heat capacity is 385 

obtained by differentiating eq. (26): 386 

 

 

 

 
f f

p pg p pgf T T

pe pg p f
T T

C C C CdT

dT C C C T

 
 


        (27) 387 

        
 

 
p pg NT

p

p f
T

C C
C

C T


           (28) 388 

where peC  is the equilibrium liquid or rubber heat capacity, pC  is the observed heat capacity, 389 

and N

pC  is the normalized heat capacity. Both peC  and pgC  are generally temperature dependent 390 

and must be obtained by extrapolation into the relaxation temperature range. It is often assumed 391 

(although rarely stated explicitly) that pC  in the denominator of eq. (27), specified at the 392 

fictive temperature fT , is the same as that at temperature T so that /fdT dT  equals N

pC . The 393 

accuracy of this approximation is demonstrated by noting that fT T  rarely exceeds 10 K or so 394 

during scanning through the relaxation region, so that for the representative hyperbolic relation 395 

1/pC T  (eq. (55) below) the error is about 3% for 373gT   K. The glassy value of fT , 396 

denoted by '

fT , is obtained by integration of the normalized heat capacity measured during 397 

heating: 398 

max

max

min

min

max max'

T
T

f N

f p

T
T

dT
T T dT T C dT

dT

 
    

 





        (29) 399 

where min maxgT T T . 400 

Since '

fT  is defined in terms of the integrated normalized heat capacity measured during heating 401 

its value for annealed glasses can be affected by possible relaxation during cooling from the 402 

annealing temperature to the starting temperature for heating. For glasses equilibrated at a gT T  403 

such relaxation results in values of 'fT  that are less than aT . The numerical value of '

fT  404 

provides a definition of gT  that is preferred over those given in terms of the heat capacity curve 405 

measured during heating, either as the onset or midpoint temperatures [11,43-45].  406 

407 
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 408 
Fig. 2. Definition of fictive temperature from experimental enthalpy versus temperature data 409 

(eq. (26)). 410 

 411 

 412 

The relative values of '

fT  and these definitions of gT  are unambiguous for unannealed glasses 413 

but for annealed glasses the two definitions give gT  values that move in opposite directions as 414 

the amount of annealing increases: '

fT  decreases but the heat capacity curve measured during 415 

heating moves to higher temperatures. The definition of gT  from the Deborah condition 416 

/ 1d dt  (eq. (1)) has been shown by Cooper and Gupta [8] to be approximately equivalent to 417 

/ 1fdT dT   during cooling: / 2.0d dt   and / 0.4fdT dT   when gT T  418 

 The fictive temperature concept becomes more complex when the memory effect 419 

associated with nonexponential relaxation functions is considered. In these cases the structure of 420 

a material must be formally defined by more than one fictive temperature and the global fictive 421 

temperature for one property may not equal that for another. Thus the fictive temperature is 422 

usually subscripted with the property being considered, e.g., ,f HT  for enthalpy and ,f VT  for 423 

volume. In this review however we deal almost exclusively with the enthalpic fictive 424 

temperature and the subscript is omitted for convenience. An example of different values of fT  425 

for different properties was described by Ritland [28] who observed that two glasses with the 426 

same refractive index arrived at by different paths (rate cooling and annealing) had different 427 

electrical conductivities. Thus at least one of these glasses was characterized by different fictive 428 
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temperatures for refractive index and electrical conductivity. Ritland concluded that a single 429 

fictive temperature gives an inadequate description of a nonequilibrium glass and this is 430 

supported by the thermodynamic analysis of Davies and Jones [46]. Another example of a 431 

different path to the same 
fT  is a rapid quench compared with a slow cool under pressure 432 

followed by pressure release (see Section 5.1.3.2). In this case the glasses have different 433 

densities and their structures are clearly different. The temptation to equate fT  with a definite 434 

molecular structure should therefore be avoided and too much physical significance should not 435 

be attached to the numerical value of what is essentially a phenomenological convenience.  436 

A second method for specifying the structural state pioneered by Kovacs and coworkers 437 

[36,47,48] is to define the departure from equilibrium in terms of a quantity 
H  defined for 438 

enthalpy as 439 

     T H T H             (30) 440 

,p f HC T T     ,          (31) 441 

where  H   is the limiting long time (equilibrium) value of  H T . As with the fictive 442 

temperature we dispense with the enthalpic subscript here. The use of   is discussed further in 443 

Section 3.2.2 when the KAHR equation is introduced.  444 

 It is often more convenient to describe the excess enthalpy of a glass using fT  rather 445 

than   because fT  is a direct measure of excess enthalpy whereas   differs for the same excess 446 

enthalpy depending on the thermodynamic temperature.  447 

 Nonlinearity is handled by making the average retardation time a function of both T and 448 

fT  (or  ). The application of this method to nonexponential relaxations is intricate because the 449 

memory effect can generate different relaxation behavior from systems that have the same 450 

instantaneous values of T and fT . This problem was first solved by Gardon and 451 

Narayanaswamy [40] and Narayanaswamy [41] using the Tool fictive temperature and the 452 

resulting phenomenology is best described as the Tool-Narayanaswamy (TN) formalism. A key 453 

concept introduced by Gardon and Narayanaswamy is the reduced time   defined as 454 

 
     

' '

' ' , '

tt

f

dt dt
t

t T t T t


 
 

 
  


 
 

.        (32) 455 

The integral is path dependent because it includes the time dependence of both T and fT . 456 

Generally speaking T(t') is specified experimentally by the thermal history and  'fT t  is the 457 

observed response to that history, although in some cases nonthermal perturbations can change 458 

fT  directly (Section 4.7). The reduced time linearizes the kinetics and the methods of linear 459 

response theory can be applied by replacing the time t with  . In particular Boltzmann 460 

superposition of responses to all past perturbations can be employed using a generalized form of 461 

thermorheological simplicity in which the shape of  t  or  lng   is invariant with respect to 462 

both T and fT . Thermorheological simplicity has been derived for glasses from the principle of 463 

equivalency between time and temperature (both thermodynamic and fictive) [49]. Thermo-464 
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rheological complexity, in which the shape of  t  or  lng   changes with T or 
fT , has been 465 

introduced into the TN phenomenology by Mazurin and Startsev [50] and others but is rarely 466 

used. Further details of how the TN formalism is implemented are given in Section 3.2. 467 

  Spurious relaxation parameters can result if nonlinearity is incorrectly incorporated into 468 

the reduced time. An example of such an incorrect analysis has been discussed by Hodge and 469 

O’Reilly [51] using unpublished observations of Scherer [52]. For short annealing times  t  470 

can be approximated as 471 

  0t tA               (33) 472 

where A is a constant with the dimension of  time


 and ln / ln ad d t   is the shift factor 473 

introduced by Struik [6]. Equation (33) has the important consequence that the nonlinear 474 

stretched exponential retains its functional form with an exponent and retardation time modified 475 

by the shift factor  : 476 

 
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0
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exp exp exp exp

' 1 '

t

dt t t
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


   (34) 477 

where 478 

 ' 1               (35) 479 

and 480 

 
 1/ 1

0' 1


  


  .           (36) 481 

Equations (33) - (36) will be referred to here as the Scherer relations. They imply that if a 482 

nonlinear stretched exponential is treated as a linear function a good fit may still be obtained but 483 

with '  and '  parameters that are determined in part by the nonlinearity parameter  . 484 

Equation (33) is often a reasonably good approximation so that these results may be fairly 485 

general. In any event the Scherer relations provide an excellent illustration of the pitfalls of 486 

neglecting or incorrectly incorporating nonlinearity in the analysis of enthalpy relaxation data. 487 

Analyses based on decay functions that omit or incorrectly incorporate nonlinearity [53-60] 488 

must be considered unreliable. For example it is clearly inconsistent to estimate a nonlinearity 489 

parameter from '  data obtained from linear fits to the stretched exponential.  490 

 In recent years another formalism for handling nonlinearity has been introduced by Ngai 491 

and Rendell. This approach differs most significantly from that of Tool-Narayanaswamy in that 492 

the time variable is not simply replaced by   and that nonlinearity and nonexponentiality are 493 

less easily separated. It is discussed in Section 4.3. 494 

 495 

1.3 Thermodynamic Aspects of the Glass Transition 496 

1.3.1 The Thermodynamic Case 497 

 The kinetics of the glass transition have a thermodynamic foundation and enthalpy 498 

relaxation therefore has a thermodynamic dimension. This dimension is discussed here. 499 

 The isobaric heat capacity of a supercooled liquid or rubber exceeds that of the crystal at 500 

the same temperature so that the excess entropy of a liquid or rubber over that of the crystal 501 

decreases with decreasing temperature. Extrapolations for many materials imply that the excess 502 

entropy would vanish at a temperature well above absolute zero. At this temperature the entropy 503 
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of the supercooled liquid equals that of the crystal and if the same trend were to extend down to 504 

absolute zero the entropy of the liquid would be less than that of the crystal, in conflict with the 505 

third law of thermodynamics. This difficulty was first recognized by Kauzmann [61] and the 506 

extrapolated temperature at which the supercooled liquid and crystal entropies become equal is 507 

known as the Kauzmann temperature 
KT . The problem is often referred to as the Kauzmann 508 

paradox because it seems paradoxical that the intervention of a kinetic event, the observed glass 509 

transition, averts rather than resolves a thermodynamic impossibility. The value of 
KT  is 510 

calculated by equating the excess entropy of the liquid relative to the crystal to the entropy of 511 

melting 
mS : 512 

 
m

K

T

p

m

T

C T
S dT

T


 





,          (37) 513 

where mT  is the melting temperature and  pC T  is now the difference in isobaric heat 514 

capacity of the liquid or rubber and that of the crystal (equal to that of the glass within 5 - 10%). 515 

Because  pC T  must be obtained by extrapolation from Tm or gT  down to KT  the value of KT  516 

can be very uncertain. For polymers this difficulty is compounded by the need to correct for 517 

tacticity and partial crystallinity. Further, as noted already, Goldstein [25,26] has argued that 518 

 pC T  is not entirely configurational and may contain significant contributions from 519 

vibrational and secondary relaxation sources. He estimated that between 20 and 80% of pC  520 

could originate from nonconfigurational sources and noted that this renders even more uncertain 521 

the extrapolations required to assess KT . Calculated values of KT  are always found to be less 522 

than gT  although in some cases the difference can be as small as 20 K [62-65]. The value of KT  523 

is often close to 0T  of the VTF equation [65], suggesting that the kinetic and thermodynamic 524 

aspects of the glass transition are related. The link between thermodynamics and kinetics is an 525 

important aspect of the glass transition phenomenon and is discussed below in more detail. 526 

 Three resolutions of the thermodynamic difficulties imposed by 0KT   have been 527 

proposed. One is that the extrapolation of excess entropy to low temperatures is not well defined 528 

and has no firm theoretical basis so that the prediction 0KT   is a spurious result of incorrect 529 

extrapolation [66,67]. As noted already however the extrapolation is only 20 K or so for some 530 

materials and a nonzero KT  seems inescapable in these cases. A second resolution, suggested by 531 

Kauzmann himself [61], is that the extrapolation is irrelevant because the thermodynamic 532 

driving force for crystallization would always intervene before the entropy problem manifested 533 

itself. However this intervention has been shown to be extremely unlikely in some systems [68] 534 

and it may actually be impossible in two rather bizarre systems (CrO3-H2O [69] and RbAc-H2O 535 

[70]) in which gT  (and possibly KT ) exceeds the eutectic temperature (the Kauzmann analysis 536 

can be applied to eutectic mixtures [68]). The third resolution is that a thermodynamic second 537 

order transition occurs at KT  at which pC  falls rapidly to zero in a manner similar to that 538 

which is observed kinetically at gT . Thus KT  is interpreted as a second order thermodynamic 539 

transition temperature (in the Ehrenfest sense, see below) but is unobservable because of kinetic 540 

factors. It seems difficult to refute this hypothesis other than to dismiss it as an artifact of 541 
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extrapolation but, as has just been noted, this objection is itself weakened by the fact that very 542 

short extrapolations are needed in some cases. Further, an entropically based second order 543 

transition at 
KT  has been derived for polymers by Gibbs and DiMarzio [71]. Although this 544 

theory has been criticized [72] its predictions agree well with experimental observations near 545 

gT , including recent ones on the effect of molecular weight on 
gT  for polymeric rings [73,74]. 546 

The case for a thermodynamic foundation for the glass transition is therefore quite strong and it 547 

is appropriate to summarize here some of the properties of thermodynamic second order 548 

transitions. 549 

 550 

1.3.2 Ehrenfest Relations 551 

 Ehrenfest [75] classified thermodynamic transitions according to the smallest order of 552 

the derivative of the free energy that exhibits a discontinuity at the transition temperature. Thus 553 

discontinuities in second derivative quantities such as the heat capacity, compressibility and 554 

expansivity are classified as second order transitions. Several thermodynamic relations can be 555 

derived for second order transitions of which only those for the pressure dependence of the 556 

transition temperature will be considered here. The purpose of these derivations is to introduce 557 

expressions that are relevant to treatments of pressure dependent kinetics to be discussed later, 558 

and that can be compared with experimental data to identify the most important thermodynamic 559 

variables controlling the glass transition and annealing phenomena. The relations are derived by 560 

setting the differences between the liquid and glassy values of the various first derivatives of the 561 

free energy equal to zero. For volume, 562 
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                  ,V dT V dP              (39) 564 

where   and   are the changes in expansivity and compressibility at gT , respectively. Thus 565 
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For entropy 568 
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      = 1

pC dT V PT d             (44) 571 

and 572 

   / / pS
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For enthalpy 574 
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P

V
C dT V V T dP

T

  
     

  
       (47)576 

       ,p

P

V
C dT TV dP

T

 
   

 
        (48) 577 

where 0V   because the transition is second order. Thus  578 

   / / pH
T P VT C     .         (49) 579 

Equations (45) and (49) are identical so that entropy and enthalpy cannot be distinguished as 580 

controlling variables. Goldstein (cited in ref. [76]) has derived an expression from the condition 581 

that cTS  is constant: 582 

cTS c p

T
VT

P S C

  
 

   
          (50) 583 

where cS  the configurational entropy. 584 

 585 

1.3.3 Prigogine-Defay Ratio 586 

 Experimental values of /gdT dP  generally agree with eqs. (45) and (49) [76,77] and are 587 

smaller than those given by eq. (41) [76], suggesting that enthalpy or entropy and not volume 588 

determines gT . However O’Reilly [77] has pointed out that   is strongly pressure dependent 589 

and that reasonable values of   can be found that satisfy eq. (41). McKenna [78] has also 590 

suggested that the usually quoted values of  , pC , and   are not obtained under the 591 

proper conditions and that if they were eqs. (41) and (45) would both be satisfied. However 592 

enthalpy or entropy or volume alone cannot determine gT . Davies and Jones [46] showed from 593 

considerations of thermodynamic stability that are independent of any assumption about a 594 

second order transition that more than one thermodynamic variable must determine 2T  if the 595 

Prigogine-Defay ratio   (eq. (51)) is greater than unity: 596 

 

 2

/
1

/

p V

S

T PC

TV T P





  
   

  
.         (51) 597 

Experimental values of   generally do exceed unity [42,79]. If it is assumed for simplicity that 598 

one variable is dominant however it is evidently better to use enthalpy or entropy rather than 599 

volume. The superiority of enthalpy or entropy over volume can be rationalized by noting that 600 

the isobaric heat capacity has contributions from internal energy sources (the isochoric heat 601 

capacity) as well as from volume changes (the term 2 /TV  ). Gupta [80] has argued that a 602 

fictive pressure fP  in addition to fT  is all that is needed to account for 1  . 603 

 604 

1.3.4 Heat Capacity Change at gT  605 

 Heat capacity is an extensive property and the appropriate mass unit for configurational 606 

heat capacity has been a subject of debate. A frequently used unit is the ‘bead’ introduced by 607 

Wunderlich and Jones [81]. The bead is defined for organic high polymers as a main chain or 608 

side chain segment or functional group. Wunderlich observed that pC  per bead is 609 

approximately constant for polymers. A review by Mathot [82] summarizes the number of beads 610 
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per repeat unit and values of 
pC  per bead for several polymers. Another method for dealing 611 

with mass is to normalize 
pC  (or 

peC ) by 
pgC . Values of 

p pgC C  vary greatly from about 612 

zero for silica to about 2.0 for some hydrogen-bonded liquids [62]. 613 

The value of  p gC T  often decreases with increasing 
gT . For polymers this can be 614 

rationalized in terms of the Gibbs-DiMarzio theory of the glass transition [71] that predicts an 615 

increase in gT with chain stiffness (amongst other factors). Since stiffness can reasonably be 616 

supposed to decrease the mean square fluctuations in configurational entropy 2

cS  it follows 617 

from the statistical mechanical relation 618 
2

B pk C S             (52) 619 

that 
pC  should also decrease (

Bk  is Boltzmann’s constant). A similar argument can be 620 

invoked to rationalize the decrease in pC  with increasing crosslink density in polymers. The 621 

value of  p gC T  has been discussed by Angell [5,20,21,62] in terms of the breakdown in 622 

structure with temperature. Materials whose structures break down rapidly with temperature 623 

have large values of  p gC T  (hydrogen bonded liquids for example) and are termed ‘fragile’. 624 

Materials whose structure is resistant to breakdown have correspondingly small values of 625 

 p gC T  (silicates, for example) and are termed ‘strong’. The variability in  p gC T  contrasts 626 

with the approximate constancy of the excess entropy at gT  for which there is abundant 627 

evidence, so it can be anticipated that small values of pC  correspond to large ratios of /g KT T   628 

[76]. This observation will enter into later discussions of the physical origin of nonlinearity. The 629 

value of pC  also generally decreases with increasing thermodynamic temperature. An 630 

illuminating discussion of  p gC T  has been given by Alba et al. [83]. Empirically pC  is 631 

often fitted to the linear equation 632 

0 1pC a a T   .           (53) 633 

Analysis of the data in ref. [82] reveals that for most polymers the values of 1 0/a a  are such that 634 

pC  has a temperature dependence lying between  635 

pC C    constant          (54) 636 

and the hyperbolic form 637 

2' / /p gC C T T CT T   ,         (55) 638 

where 'C  is the value of pC  at gT  and C is the value at 2T . The intermediate behavior of 639 

polymers supports the speculation by Angell [5] that the temperature dependence of pC  640 

should be weaker than hyperbolic for larger molecules. For some materials such as bisphenol A 641 

polycarbonate (BPAPC, often referred to simply as ‘polycarbonate’), eq. (53) parameters predict 642 

that pC  would be zero near the melting temperature, an unlikely result. For other materials 643 

pC  is predicted to be negative some 100-200 K above gT . Negative values are unphysical and 644 

serve to emphasize the empiricism of eq. (53). On the other hand the hyperbolic form of eq. (55) 645 
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is accurate for many nonpolymeric materials [83-85] and never becomes negative. It should be 646 

noted however that eqs. (53) and (55) are approximately equivalent for 
gT T  provided 647 

  3

1 0/ 1/ 2 10ga a T    K-1: 648 

 
 

 22 2 2 2

2

1 2

1
p

g g g g

CTCT CT CT CT
T

T T T
a b

T
T

T
C T


     


       (56) 649 

where / 1 1gT T   . 650 

 651 

2 Experimental Techniques 652 

2.1 Scanning Calorimetry 653 

 The most frequently used technique for studying enthalpy relaxation is differential 654 

scanning calorimetry (DSC). Indeed, the introduction of commercial DSC instruments 655 

essentially made the field of enthalpy relaxation possible. In this technique the difference in 656 

electrical power needed to heat a sample and a reference material to the same temperature is 657 

assessed, produced and measured (hence the term differential). The reference (usually alumina) 658 

is heated at a controlled, known and uniform heating rate (thus the term scanning). The 659 

differential current is proportional to the heat capacity difference between the sample and 660 

reference and is a direct measure of the sample heat capacity if the reference exhibits no 661 

transitions and is thermally stable. Quantitative heat capacities can be obtained if the heat 662 

capacity of the reference is known as a function of temperature. These data are necessary only if 663 

the approximate equality between N

pC  and /fdT dT  (eq. (28)) breaks down, however, and even 664 

in this case only heat capacity values in excess of  pgC T  are needed. As noted already 665 

however eq. (28) is sufficiently accurate in most cases that absolute heat capacities are not 666 

needed. Thus the measurement of absolute heat capacities will not be described here.667 

 Experimental heat capacity data must be normalized in order to compare them with 668 

calculated curves. As noted in Section 1.2.3 both  pgC T  and  peC T  must be extrapolated 669 

through and beyond the glass transition temperature range and this places a premium on 670 

experimental precision. One potential cause of poor reproducibility in  N

pC T  is a baseline shift 671 

between scans that changes the absolute values of  pgC T  and  peC T  but not their difference. 672 

Thus it is advisable to compute N

pC  using  pgC T  and  peC T  data from the same scan, rather 673 

than averaged values for several scans (desirable for the most accurate absolute heat capacities). 674 

The liquid (rubber) heat capacity, being an equilibrium property, is not sensitive to thermal 675 

history (apart from the real possibilities of chemical decomposition or crystallization). The 676 

glassy heat capacity is more problematic because relaxation effects can affect it to quite low 677 

temperatures so that  pgC T  should be determined at temperatures as far below the glass 678 

transition range as possible. 679 

 It is important that good thermal contact be made between the sample and sample pan, 680 

and between the pan and the instrument cup. Good sample-to-pan contact is readily achieved by 681 

forming samples into thin disks that fit snugly into the pan. Thermal contact between the sample 682 

pan and instrument cup can be improved by applying silicone grease between the pan and the 683 

cup. Thermal contacts can be important in determining the dynamic response of measurements 684 

and thermal transfer corrections are a constant source of uncertainty in all enthalpy recovery 685 
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experiments. Some researchers insist that corrections should always be applied before any data 686 

analyses are attempted, while others have restricted their analyses to low overshoot data 687 

obtained at relatively slow heating rates (Section 4.6). Thermal transfer is probably a more 688 

important issue for polymers than for inorganics because polymers have lower thermal 689 

conductivities and their glass transitions usually occur over a smaller temperature range. Two 690 

aspects of thermal transfer will be addressed here. The first is the time constant for heat transfer 691 

to the sample arising from the heat capacity of the sample plus pan, and the total thermal 692 

resistance between the instrument cup and sample. The effects of this time constant on the 693 

scanned heat capacity have been estimated by Gray [87]: 694 

 695 

     *

p p th pC t C t dC dt           (57) 696 

      * /p p th pC t C t dC dT dT dt          (58) 697 

     *

p p th p hC t C t dC dT Q           (59) 698 

     *

0p p p p hC t C t R MC dC dT Q          (60) 699 

where  pC t  and  *

pC t  are the observed and true heat capacities per unit mass respectively, th  700 

is the thermal time constant, M is the sample mass, and 0R  is the total thermal resistance 701 

between instrument cup and sample. A predicted baseline shift due to sample mass has been 702 

omitted. Equations (57) - (60) quantify the intuitive notions that large thermal resistance, large 703 

sample mass, fast heating rates and rapidly changing heat capacity will all adversely affect 704 

transient data. The thermal resistance 0R  can be estimated from melting endotherms, which are 705 

predicted to rise linearly with slope 0/ 1/p hdC dT R Q  and to decrease exponentially with time 706 

constant th . For good thermal conductors such as indium 0R  obtained in this way is dominated 707 

by the contact resistance between the pan and cup and this dominance can also be expected for 708 

poorer conductors such as polymers and inorganic glasses. Contact resistance is affected by the 709 

flatness of the sample pan bottom, which can be distorted by small misadjustments of sample 710 

preparation devices such as crimping presses. The application of silicone grease to the interface 711 

between the cup and sample pan, mentioned above, reduces this problem by decreasing 0R . 712 

[section deleted] 713 

Equations (57) - (60) have not yet been applied to enthalpy relaxation analyses although 714 

Hutchinson and co-workers [90,91] used a similar procedure (see below). 715 

 The thermal resistance of the sample also produces a temperature gradient across the 716 

sample. The first measurement of this appeared in the thesis of DeBolt [88] in which 717 

temperature differences of up to 1 K across ~1 mm thick samples of Vycor glass were reported. 718 

These data were obtained by placing slivers of indium at the bottom and top of the sample and 719 

measuring the two melting temperatures. O’Reilly and Hodge [89] applied the same technique 720 

to polystyrene and observed temperature differences across a 0.5 mm sample ranging from 0.3 721 

K at a heating rate of 1.25 K min-1 to 1.3 K at 20 K min-1. These differences increased linearly 722 

with heating rate for both 0.15 and 0.5 mm thick samples but the variation with sample 723 

thickness depended on heating rate (qualitatively consistent with eq. (60)). Since high 724 

overshoots can have a ‘full width at half height’ of just a few K (using 1N

pC   as a ‘baseline’) 725 

such gradients can be expected to be significant. Hutchinson and coworkers [90,91] proposed 726 
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that transfer effects be assessed by assuming the heat capacities are exactly described by the 727 

KAHR (and TN [92]) models (Section 3.2.2) and to ascribe all deviations to thermal transfer 728 

effects. The KAHR and TN models predict that for a constant ratio of cooling to heating rate the 729 

heat capacity measured during heating shifts along the temperature axis with changes in heating 730 

rate, but does not change shape. This approach depends on the KAHR or TN formalisms being 731 

correct which is a reasonable assumption for the simple rate cool and reheat histories that the 732 

method uses. 733 

 Thermal transfer effects have also been discussed by Lagasse [93], Mraw [94], 734 

Richardson and Burrington [95] and Hutchinson [96]. Richardson and Burrington determined a 735 

temperature difference between the temperature sensor and the bottom of a sapphire sample of 736 

about 4 K at a heating rate of 30 K min-1, that decreased linearly with decreasing heating rate 737 

and passed through the origin. Sample mass has been reported to affect the temperature 738 

difference between the sample and temperature sensor [95] as well as the normalized heat 739 

capacity overshoot [97], consistent with eq. (60). Lagasse [93] described a technique for 740 

overcoming thermal transfer in the measurement of enthalpy loss during annealing. It exploits 741 

the transients induced by starting and stopping scans and is similar to the technique used by 742 

Richardson [98] and Gray [99] for measuring the enthalpy of melting of crystalline polymers. 743 

 744 

2.2 AC Calorimetry 745 

 This recent technique has been applied to the glass transition by Birge and Nagel 746 

[100,101], Menon et al. [102], and Birge [103]. It is an extension of techniques used to measure 747 

static heat capacities of organic liquids (see refs. [7-9] in ref. [102]) and is an important 748 

development because it measures enthalpy relaxation in the linear region of small temperature 749 

changes, thus avoiding the intricate nonlinear phenomenology and data analysis needed in 750 

scanning calorimetry. The experiments are tedious and demanding however and to date only a 751 

few materials have been characterized.  752 

 Birge [103] has given an excellent discussion of the frequency dependent heat capacity. 753 

The heat capacity is proportional to the mean square fluctuations in entropy (eq. (52)), and since 754 

these fluctuations have an associated spectral density it follows from the fluctuation-dissipation 755 

theorem that the frequency dependent heat capacity  *

pC i  is complex. The imaginary 756 

component of a complex response function is normally associated with the absorption of energy 757 

from the applied field but in ac calorimetry there is no net exchange of energy between the 758 

sample and its surroundings. However there is a change in the entropy of the surroundings that 759 

is proportional to "

pC  and the second law of thermodynamics ensures that " 0pC  . The 760 

experimental technique is to drive a sinusoidal current  I t  through a thin heater made from a 761 

material with a large temperature coefficient of electrical resistance (usually nickel). The 762 

magnitude of the temperature oscillations depends on thermal diffusion from the heater into the 763 

sample and is a function of the heat capacity, thermal conductivity and geometry of the sample. 764 

Information on  *

pC i  is obtained from the magnitude of the temperature oscillations. The 765 

electrical power  P t  is proportional to the square of the current so that the temperature  T t  766 

has a dc component and a phase shifted oscillation at twice the current frequency: 767 

   0 cos / 2 ,I t I t           (61) 768 

     2

0 / 2 1 cos ,P t I R t            (62) 769 
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   cos .dcT t T T t               (63) 770 

The oscillating temperature produces an oscillating heater resistance  R t  which with the 771 

current at frequency / 2  produces a voltage  V t  across the heater with a component at 772 

frequency 3 / 2 :  773 

   cosdcR t R R t     ,          (64) 774 

 dcR R T   ,           (65) 775 

         /2 3 /2cos / 2 ' cos 3 / 2V t I t R t V t V t         ,     (66) 776 

3 /2 0 / 2,V I R             (67) 777 

where   in eq. (65) is the temperature coefficient of resistance of the heater. Accurate 778 

measurement of the third harmonic signal requires considerable care. An important element of 779 

the technique is the use of a Wheatstone bridge to cancel the fundamental component of the 780 

signal which is much stronger than the third harmonic. An out of phase component at the 781 

fundamental (eq. (66)) is not cancelled by the bridge but does not present a problem to any good 782 

lock-in amplifier. If the bridge is purely resistive over the frequency range of interest any third 783 

harmonic distortion in the source signal is also nulled. The frequency range is 210  to 36 10  784 

Hz. For most boundary conditions the product pC   is obtained from T  rather than pC  alone 785 

(where   is the thermal conductivity). 786 

 787 

3 Phenomenological Expressions 788 

 A minimum of four parameters is needed to describe enthalpy relaxation. An effective 789 

activation energy is required to specify the cooling rate dependence of 'fT , a pre-exponential 790 

factor fixes the absolute value of 'fT , and a minimum of one parameter each is needed to 791 

specify nonexponentiality and nonlinearity. In this section we summarize the mathematical 792 

expressions used to express these different aspects of relaxation behavior. Activation energies 793 

are discussed with nonlinearity because the nonlinearity parameters define the activation 794 

energies above and below gT . 795 

 796 

3.1 Nonexponentiality 797 

 Many empirical functional forms for nonexponentiality have been suggested. A widely 798 

used, versatile, convenient and generally accurate decay function is the stretched exponential 799 

     0exp / 1 0t t


      
 

.        (68) 800 

This is referred to as the Kohlrausch [104,105], Williams-Watt [l06,107] or Kohlrausch-801 

Williams-Watt (KWW) function, and statisticians will find it (and its derivative) familiar as the 802 

Weibull distribution (albeit with   > 1). It has been said with considerable justification [9] that 803 

eq. (68) has been in use for so long and in so many different applications that it seems 804 

inappropriate to attach individual names to it. We adopt this position here and refer to eq. (68) 805 

as the stretched exponential. The average retardation times are 806 

    0 / /n n n n        ,         (69) 807 

   0 / 1 1 /n n n        ,         (70) 808 
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and the ratio of retardation to relaxation times is (cf. eq. (18)) 809 

 

 

2

2 2

2 /

1/

relaxret

relax relax

  

 


 

  

.         (71) 810 

Neither  lng   nor  *R i  is expressible in terms of named functions except for 0.5  : 811 

 
 

 
0

1/2

0

exp / 4

2
g

 





           (72) 812 

and 813 

 
 

   

1/2
2

1/2 1/2

0

1
* exp erfc

2

R U

U

R R k k
R i R

ii i




  

     
            

     (73) 814 

                      
1/2

1/2 2

0

1
exp erfcR U

i
R R z iz




 

   
      

  
,     (74) 815 

where  
1/2

02k 


 ,  
1/2

08   and  1 /z i     . Tables of    2exp erfcz iz   are 816 

available [108] and are included as library functions in some software products. Tables of both 817 

 g   and  *R i  for 0.3 1.0   have been prepared by expressing eq. (68) as a sum of 818 

exponentials [109,110]. The value of   can be obtained from the full width at half height of the 819 

loss component  "R     expressed in decades of   [111]: 820 

 1 2.08984 0.96479 0.004604 0.3 1.0;1.14 3.6            ,    (75) 821 

which gives   to within ±0.001 for 0.7   and within ±0.002 for 0.7 0.95  . The 822 

stretched exponential has also been applied to enthalpy relaxation in a truncated form in which 823 

the short time components of  g   are suppressed [112,113]. 824 

 An empirical function often used in dielectric relaxation spectroscopy is the Davidson-825 

Cole function [114]. It is characterized by a nearly single relaxation time (Debye) low frequency 826 

response and an extended high frequency tail in the loss. This function is unusual in having 827 

simple forms in the frequency, retardation time and real time domains. In the frequency domain 828 

 
 

 0

* 0 1
1

R U

U

R R
R i R

i


 



   


       (76) 829 

from which  830 

      ' cos cosU R UR R R R


             (77) 831 

and 832 

      " cos sinR UR R R


    ,        (78) 833 

where 0tan  . The distribution function is 834 
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       (79) 835 

and the decay function is 836 

   01 , /t G t               (80) 837 

where 838 

 
 

 
0/

1

0

0

1
, / exp

t

G t x x dx


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

 
          (81) 839 

is the incomplete gamma function [108]. Equation (80) has not been very useful in the past 840 

because of the inaccessibility of  0, /G t   but this function is now increasingly available in 841 

Fortran mathematical libraries. A numerical approximation to  t  can be made by discretizing 842 

 g   and expressing  t  as a discretized version of eqs. (8) and (9) and such discretized 843 

functions have been applied to enthalpy relaxation [112,l13]. The parameter   can also be 844 

expressed in terms of the full width at half height of the loss peak  "R   [111]: 845 

 1 21.2067 1.6715 0.222569 0.15 1.0;1.14 3.3            ,    (82) 846 

which gives   to within ±0.002 for 0.9  . Maximum values of  "R   are given by eq. (78) 847 

for  max / 2 1      . Lindsey and Patterson [110] have given a detailed comparison of the 848 

Davidson-Cole and stretched exponential functions. They found that the two decay functions are 849 

surprisingly similar given the quite different distribution functions. 850 

 A logarithmic Gaussian distribution for  lng   has been fitted to enthalpy relaxation 851 

data [112,113]: 852 

    2 2

01/2
ln exp ln /

b
g b  



 
     

 
.        (83) 853 

It is derived from the reasonable assumption of a Gaussian distribution of activation energies. 854 

The latter implies that  lng   changes with temperature and/or fictive temperature although 855 

neither of these possibilities is usually incorporated into enthalpy relaxation calculations. 856 

 Box and wedge distribution functions have also been applied to enthalpy relaxation. As 857 

introduced by Tobolsky [115] the single box distribution is 858 

   2 1 2 1

2 1

ln 1/ ln /

0 .

g      

  

  

  
        (84) 859 

Expressions for  "R   corresponding to the box distribution have been given by Frohlich 860 

[116]. The wedge distribution is 861 

 
1/2 1/2

1 2
2 11/2 1/2 1/2

2 1

2 1

1
ln

0 .

g
 

   
  

  

  


  

       (85) 862 

The double box distribution 863 
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        (86) 864 

has been used in the analysis and parameterization of enthalpy relaxation data by Kovacs, 865 

Hutchinson and coworkers [47]. The decay functions corresponding to certain double box 866 

distributions are remarkably similar to the stretched exponential function for 0.5  . 867 

 Other functions, used principally in the frequency domain of dielectric relaxation, 868 

include the Cole-Cole [117], Havriliak-Negami [118] and Glarum [119] functions. However 869 

these are inconvenient to use in the time domain and have not yet been applied to enthalpy 870 

relaxation. 871 

 872 

3.2 Nonlinearity 873 

3.2.1 Narayanaswamy-Moynihan Equation 874 

 Narayanaswamy [41] introduced a generalized version of the Arrhenius equation of the 875 

form 876 

0 exp
g s

f

H H
A

RT RT


 
   

 

,          (87) 877 

where A, gH  and sH  are constant parameters and R is the ideal gas constant [120]. In the 878 

equilibrium state above gT  where fT T  eq. (87) transforms to the familiar Arrhenius form 879 

with an activation energy g sH H . Moynihan et al. [12] rewrote this equation as 880 

 
0

1 **
exp

f

x Hx H
A

RT RT


  
  

  

,         (88) 881 

where x is a partitioning parameter that defines the degree of nonlinearity, and this is the form in 882 

which the equation is now used. We refer to eq. (88) as the Narayanaswamy-Moynihan (NM) 883 

equation. It has been recognized since its introduction that eq. (88) is only approximately true 884 

near gT  because it predicts an Arrhenius temperature dependence in the equilibrium state above 885 

gT  that is inconsistent with the VTF equation. However the range in T and fT  over which the 886 

glass transition occurs is sufficiently small that the effective VTF activation energy (eq. (5)) is 887 

almost constant. In some cases the equilibrium temperature dependence just above gT  reverts to 888 

the Arrhenius form rather than continuing a VTF dependence, and eq. (88) is not inconsistent. 889 

Such a return to Arrhenius behavior just above gT  is observed for the viscosity of B2O3 [121], 890 

Ca/KNO3 [122] and some simple organic  compounds [123], and is discussed below (Section 891 

6.3). 892 

893 
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3.2.2 The KAHR Equation 894 

 Kovacs, Aklonis, Hutchinson and Ramos (KAHR) [47] introduced the expression 895 

       0 0ln , ln , 1 /r r pT T T T x C                  (89) 896 

where   is given by eqs. (30) and (31), 
rT  is a reference temperature close to 

gT ,   is a form of 897 

activation energy and x is a parameter that partitions T and  . As noted in the Introduction   898 

lies in the range 0.1 - 1 K for a wide variety of materials. Equation (89) is referred to as the 899 

KAHR equation. The relation between   and the NM parameter *h  is derived by equating the 900 

temperature derivatives of 
0  in the equilibrium state  , 0fT T     and making the 901 

approximation f gT T T  : 902 

2 2 2

* * *

f g

h h h

RT RT RT


  
   .          (90) 903 

Within the same approximation the x parameters of eqs. (88) and (89) are equivalent: 904 

   
     * 1 * 1 1 ** *

1 f

f

h x h x x hh x h
T x T T

RT RT RT RT RT
 

      
         .   (91) 905 

Dimensionless and normalized parameters and variables have been defined for the KAHR 906 

equation. The dimensionless temperature T  is 907 

T   =
2

*

g

h T
T

RT



            (92) 908 

and the normalized heating or cooling rate D is 909 

D   = 
2

*

g

h
Q Q

RT



 .           (93) 910 

The dimensionless amount of annealing D  H is 911 

D  H = 
2

* f

p g

h T

C RT

   



,          (94) 912 

where   and fT  denote changes during annealing. An effective retardation time eff  is often 913 

associated with the KAHR phenomenology: 914 

1 1

eff

d

dt



 

 
  

 
.           (95) 915 

The value of eff  equals the retardation time for an exponential decay but for a nonexponential 916 

decay function such as the stretched exponential function with a constant retardation time 0  it 917 

is time dependent: 918 
1

0

1

eff

t




 

 
  

 
.           (96) 919 

Thus its use complicates the treatment of nonlinearity in which 0  is also time dependent. 920 

921 
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3.2.3 Adam-Gibbs Equation 922 

 The Adam-Gibbs theory for linear relaxations [16] is based on transition state theory and 923 

predicts that configurational entropy determines the average relaxation time. It gives rise to 924 

equations that are almost indistinguishable from the VTF equation, and for the hyperbolic form 925 

of  pC T  (eq. (55)) it reproduces the VTF equation exactly. The ease with which this 926 

equation can be extended through the glass transition to the glassy state was quickly recognized 927 

by Macedo and Napolitano [121], Goldstein [124], Kovacs et al. [125], Plazek and Magill [126], 928 

Magill [127] and Howell et al. [128], but was not used explicitly for enthalpy relaxation until 929 

the pioneering work of Scherer [129] and in later studies by Hodge [130]. Because it invokes 930 

general concepts that have had an important influence on thinking about the cooperative nature 931 

of molecular motions in the glass transition region, a derivation of the equation is given here. 932 

 The central assumption is that relaxation involves the cooperative rearrangement of 933 

many ‘particles’ (defined below). The transition state activation energy aE  is expressed as 934 

aE z              (97) 935 

where   is the elementary excitation energy per particle and z is the number of particles that 936 

cooperatively rearrange. It can be shown mathematically that only the minimum value of z, z*, 937 

significantly contributes to the relaxation time. The value of z* is determined by equating two 938 

expressions for the configurational entropy per particle 939 

 

 

*

*

c c

A

S T s

N z T
 ,          (98) 940 

where  cS T  is the macroscopic configurational entropy (defined below), NA is Avogadro’s 941 

number and *

cs  is the configurational entropy of the smallest number of particles capable of 942 

rearranging. Thus 943 

 0 exp /aA E RT             (99) 944 

*
exp

B

z
A

k T

 
  

 
           (100) 945 

 

*

exp A c

c B

N s
A

S T k T

 
   

 
,          (101) 946 

where a pre-exponential factor  
1

1 exp / Bk T


     has been suppressed because of its weak 947 

temperature dependence relative to the exponential term. There must be at least two 948 

configurations available to the smallest rearranging group (those before and after 949 

rearrangement) so that 950 
* ln * ln 2c B Bs k W k  ,          (102) 951 

where W* is the minimum number of configurations needed for rearrangement. The value of cS  952 

is given by 953 

 
2

/

T

c p

T

S C T dT             (103) 954 

where 2T  is the temperature at which cS  is zero, i.e., the Kauzmann temperature. As noted in 955 
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the Introduction we refer to it here as 
2T  rather than 

KT  to emphasize that it is an adjustable 956 

parameter connected with the nonlinear kinetics of the glass transition. Assessment of  pC T  957 

requires care. It is common to equate it with the difference between the liquid or rubber and 958 

glass heat capacities on the assumption that this difference is totally configurational but, as 959 

noted already, this assumption has been challenged by Goldstein [25,26]. Moreover the 960 

temperature dependence of 
pC  must be obtained from extrapolated data and these 961 

extrapolations are uncertain. For example Cpg must be obtained at temperatures well below 
gT  962 

to ensure that relaxation effects are not included in its temperature dependence. These low 963 

temperature data require lengthy extrapolations that place high demands on experimental 964 

precision. In addition Cpg must be measured over a significant temperature range in order that its 965 

temperature dependence be accurately determined. Huang and Gupta [131] evaluated 966 

expressions for  pgC T  suitable for extrapolation into and above the glass transition 967 

temperature range for a soda lime silicate glass. 968 

 The functional form for  0 T  depends on the temperature dependence of pC  (see 969 

Section 1.3.4). For pC C    constant (eq. (54)) 970 

 0 2exp / ln /A Q T T T              (104) 971 

where 972 
*

A c

B

N s
Q

k C

 
  
 

.           (105) 973 

Equation (104) is almost indistinguishable from the VTF equation and in fact retaining only the 974 

first term in the expansion of the logarithmic term reproduces the VTF form. For the hyperbolic 975 

form of eq. (55) 976 

 21 /cS C T T             (106) 977 

and the VTF form is reproduced exactly [76,132]: 978 

 
0

2 2

exp exp
1 /

Q Q
A A

T T T T T


     
     

     

.       (107) 979 

As noted already (Section 1.3.4) the hyperbolic eq. (55) has a somewhat stronger temperature 980 

dependence than that observed for most polymers, according to plots of the data compiled in 981 

Ref. [82] and thus should be regarded only as a mathematically convenient approximation for 982 

polymers. 983 

 Equations (98) and (106) imply that z* is proportional to  
1

21 /T T


 . Thus z* and the 984 

barrier height *z   diverge as T → T2 and this divergence can be expected to prevent gT  985 

approaching 2T  [130,133,l34]. Since z* is conceivably associated with some form of correlation 986 

length it is of interest that the correlation length computed from a random field Ising model also 987 

diverges, albeit as  1 /cT T


  [135]. However no evidence for a structural correlation length 988 

was observed in a viscosity study of glycerol by Dixon et al. [I36], nor in a molecular dynamics 989 

simulation by Ernst et al. [137]. On the other hand if z* is interpreted in dynamic terms, for 990 

example as the minimum number of particles needed for the ensemble averaged time correlation 991 

function to be independent of size, it would not necessarily be seen structurally. It is also 992 
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possible that z* corresponds in some way to the ‘dynamic characteristic length’ defined by the 993 

ratio of the frequency of the Raman ‘boson’ peak to the speed of sound [138,139]. Adam-Gibbs 994 

behavior has been observed in a spin facilitated kinetic Ising model developed by Frederickson 995 

[140]. 996 

 As noted above the AG equation has been extended through the glass transition to the 997 

glassy state by several investigators by replacing T with 
fT  in the expression for Sc. In applying 998 

this extension to enthalpy relaxation it must be assumed that the entropic 
fT  is the same as the 999 

enthalpic fT  that enters into the nonlinear forms of  0 , fT T . This equality is a good 1000 

approximation however because the temperature factor relating enthalpy and entropy does not 1001 

vary by more than about 20 K over the glass transition temperature range of integration. Scherer 1002 

[129] inserted the empirical eq. (53) form of  pC T  into eqs. (101) and (103) using 1003 

experimental values of the coefficients 
0a  and 

1a  and obtained good agreement with the 1004 

enthalpy relaxation data for NBS-710 glass reported by Sasabe et al. [141]. Satisfactory fits 1005 

(within experimental uncertainty) were also obtained for published viscosity data [142]. For 1006 

pC C   the nonlinear form of eq. (104) is 1007 

 0 2exp / ln /fA Q T T T  
 

.         (108) 1008 

For 2 /pC CT T   1009 
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Q
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T T T

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   

    

.        (109) 1010 

Equation (108) has been termed AGL [130] (L denoting the logarithmic term) and eq. (109) has 1011 

been referred to as AGF (‘Adam-Gibbs-Fulcher’) [130]. Approximate relations between the 1012 

Narayanaswamy and Adam-Gibbs parameters are derived from the temperature derivatives of 1013 

0  in the equilibrium  fT T  and glassy  '  ffT T  states. For eq. (108) 1014 
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      (110) 1015 

(see eq. (113) below) and 1016 
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x h
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     
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   
,         (111) 1017 

where 1018 

 '

2ln /fL T T           (112) 1019 

and the approximation 'fT T  has been used. Thus 1020 

 / 1x L L  .           (113) 1021 

Equations (110) and (111) were first obtained, using a different notation, by Plazek and Magill 1022 

[126]. For eq. (109) 1023 
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R xT T T T
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       (114) 1024 

(see eq. (116) below), 1025 
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 2

*

1 /

x h Q

R T T

 
 

 
,         (115) 1026 

and 1027 
'

21 / fx T T  .           (116) 1028 

Equations (114) and (115) were first obtained by Macedo and Napolitano [121], albeit using a 1029 

different route. They considered the ratio of glassy and liquid state activation energies and 1030 

inferred the eq. (106) form for Sc by equating the VTF and entropic AG equations. They did not 1031 

invoke the hyperbolic form of  pC T , first applied to enthalpy relaxation by Hodge [130] but 1032 

having much earlier roots [76,132]. Equations (110) - (116) are special cases of the general 1033 

expressions first derived by Howell et al. [128]: 1034 
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         (117) 1035 

and 1036 

 '*/ / c fx h R E S T  ,          (118) 1037 

where *

cE s  . Thus the general expression for x is, in the approximation '

fT T , 1038 
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.         (119) 1039 

The difference in '

2/fT T  evaluated from eqs. (113) and (116) depends on the value of x. For 1040 

small x the difference is small but for large x it can be substantial. For x = 0.l5 '

2/ 1.19fT T   and 1041 

1.18 from eqs. (113) and (116) respectively, whereas for x = 0.70 values of 10.3 and 3.33 are 1042 

obtained. 1043 

 1044 

3.2.4 Free Volume Equations 1045 

 Free volume theories are less easily generalized to the nonlinear domain because 1046 

although a fictive temperature can be associated with the free volume it is not clear how a 1047 

sufficiently strong temperature factor can be introduced. This deficiency was first emphasized 1048 

by Goldstein and Nakonecznyi [143] in their analysis of the volume relaxation data for PVAc 1049 

reported by Kovacs [36] and has also been discussed by Macedo and Napolitano [121]. The 1050 

close-packed or occupied volume V0 that is subtracted from the observed volume to give the free 1051 

volume is temperature dependent [18], but this temperature dependence arises from the 1052 

anharmonicity of vibrational modes and as Ferry [18] has pointed out “...its magnitude and 1053 

thermal expansion coefficient 0  ... remain a matter of conjecture and can be estimated only 1054 

indirectly”.  1055 

 Free volume theories have been derived that introduce an explicit temperature term but 1056 

the resulting equations contain undesirable extra adjustable parameters. These (and other) 1057 

equations have been discussed by Scherer [129] and Hodge [130]. Macedo and Litovitz [144] 1058 

derived a hybrid equation by modifying the Doolittle equation [145] (rationalized by Cohen and 1059 

Turnbull [146]) 1060 

 exp /A b f  ,          (120) 1061 

where b is a constant of order unity and f is the free volume fraction defined as 1062 
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,       (121) 1063 

where V  and V0 are the equilibrium (limiting long time) and ‘occupied’ volumes respectively. 1064 

The quantity 
v  has been discussed above in the context of the KAHR phenomenology and can 1065 

be identified here with the recoverable part of the fractional free volume. Macedo and Litovitz 1066 

suggested that an activation energy be added to the free volume term to account for the thermal 1067 

activation needed for a particle to move from one pocket of free volume to another: 1068 
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V RT
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 
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.          (122) 1069 

If fV  is assumed to vary as 2fT T  eq. (122) becomes 1070 
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T T RT

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,          (123) 1071 

whose linear forrn ( fT T ) was first proposed by Dienes [147]. The Dienes equation was 1072 

reported by Macedo and Litovitz to give a good fit to viscosity data for B2O3, SiO2, alkali 1073 

silicates, alcohols and poly(isobutylene). 1074 

 Mazurin et al. [148] proposed the equation 1075 
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       (124) 1076 

which becomes the VTF equation above gT  where fT T  and is Arrhenius in the glassy state. 1077 

This equation is not attractive however because it contains an additional adjustable parameter. 1078 

 Free volume concepts have been applied through and below gT  by Kovacs et al. [125]. 1079 

They wrote the equilibrium fractional free volume Tf  (eq. (121)) as 1080 

 T g f gf f T T              (125) 1081 

where f is the coefficient of fractional free volume thermal expansivity and fg is the fractional 1082 

free volume of the glassy state. Thus 1083 
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Comparing eq. (126) with the KAHR equation (eq. (89)) yields 1085 
2/f gb f              (127) 1086 

and 1087 

  21 / Tx b f    ,           (128) 1088 

where   is the change in free volume expansivity at gT . For gT T  1089 

  /f fx     .          (129) 1090 

 A free volume expression can also be formulated using Adam-Gibbs concepts by 1091 

defining z* in terms of the free volume per particle rather than the entropy per particle. This 1092 
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approach is straightforward but does not appear to have been described before. Equation (98) is 1093 

replaced by 1094 

   / */ *f AV T N v z T           (130) 1095 

so that 1096 

 
 

*
* A

f

N v
z T

V T
 ,          (131) 1097 

where v* is the minimum volume needed for rearrangement. The nonlinear free volume version 1098 

of the Adam-Gibbs equation then becomes 1099 

 
 0

,

*
, exp A

f

B f f v

N v
T T A

k TV T




 
  

  

.         (132) 1100 

It seems natural to interpret v* as the activation volume for the pressure dependence of 
0 . For 1101 

polystyrene this is about 300 ± 100 cm3 per mol of monomer [149]. 1102 

 1103 

3.3 Pre-exponential Factor 1104 

 This is determined by '

fT  and the TN and KAHR activation energies *h  and θ: 1105 

   ' '

' '

*
ln ln 4.6 100s

eff

f f

f f

hh
A T T

RT RT
 


       
 

     (133) 1106 

       4.6gT  .           (134) 1107 

For thermal histories without annealing changing ln A moves the Tf vs. T curve along the fT T  1108 

equilibrium line, and the /fdT dT  vs. T curve along the T axis by an amount 1109 

 2 / * ln ln /gT RT h A A       .        (135) 1110 

Changes in ln A affect annealing behavior because the difference between '

fT  and aT  determines 1111 

in part the rate of annealing. 1112 

 1113 

4 Calculation Procedures 1114 

4.1 The KAHR Method 1115 

 Kovacs, Aklonis, Hutchinson and Ramos [47] described a procedure for solving the set 1116 

of coupled nonlinear differential equations that arises in the KAHR phenomenology. The 1117 

nonexponential decay function is written as a finite series of exponentials where the retardation 1118 

times  i  are defined by the KAHR equation (89): 1119 

   exp / ,i i

i

t g t T      .         (136) 1120 

The coefficients gi also define the weighting factors dividing the total departure from 1121 

equilibrium   of eqs. (30) and (31) into components i  that correspond to each i . 1122 

Thermorheological simplicity is enforced by keeping the  ig  constant. The differential 1123 

equations are those defining the exponential function: 1124 

 ,

i i

i

d

dt T

 

 


            (137) 1125 
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where 1126 

; 1i i i

i i

g g    .         (138) 1127 

Equation (137) is the same as that used in the pioneering work of Tool [38]. However Tool used 1128 

the equation to define the complete decay function whereas in the KAHR phenomenology it 1129 

defines only one component of a nonexponential decay function. Equations (136) and (137) are 1130 

coupled because the 
i  are defined in terms of the global value of   rather than the components 1131 

i . The numerical solution of these coupled nonlinear differential equations is computationally 1132 

expensive, in part because the time increments must be very small in the equilibrium state above 1133 

gT  where the retardation times are short. Thus considerable time is spent on calculating the 1134 

equilibrium heat capacity before the departures from equilibrium that are of interest are 1135 

computed during cooling. This formalism was the first to be applied to rate cooling and heating 1136 

histories with intervening annealing and gave the first prediction and explanation of sub- gT  1137 

endotherms in scans of annealed glasses [47], but it has been used to fit only a limited number 1138 

of experimental heat capacity data. 1139 

 1140 

4.2 The Tool-Narayanaswamy (TN) Method 1141 

 The TN method is based on Boltzmann superposition of responses that have been 1142 

linearized using the reduced time method of Gardon and Narayanaswamy [40] (Section 1.2.3). It 1143 

was used to describe annealing effects by Narayanaswamy [40,41] and others [150] but was first 1144 

applied to thermal histories that included rate cooling and heating in 1975 by Mazurin et al. 1145 

[151] and Moynihan et al. [150]. The TN method has since been used by many groups. The 1146 

method is computationally more efficient and more easily implemented than the KAHR method 1147 

and has been extensively used to extract enthalpy relaxation parameters from experimental data. 1148 

Both the Boltzmann and reduced time integrals must be evaluated numerically. Numerical 1149 

evaluation of the Boltzmann integral is accomplished by expressing the thermal history T(t) as a 1150 

series of temperature steps kT  that are small enough to ensure a linear response (generally 1 K 1151 

but see below). For uniform cooling and heating without intervening annealing  fT t  is given 1152 

by 1153 

 , 0 ,

1

1
n

f n j j n

j

T T T  


    
          (139) 1154 

       0 0,

1

1 /
n n

j k k k

j k j

T T T Q 
 

  
      

   
  ,       (140) 1155 

where  0 gT T  is the temperature from which cooling starts, Qk is the cooling or heating rate 1156 

(negative for cooling), 0,k  is a function of ,f kT , and 
0

1

n

k j

j

T T T


   . During annealing the 1157 

upper index of the Boltzmann summation is fixed at nA and the reduced time summation 1158 

becomes [152] 1159 

 ,

0,

1,
A

A

n n

k
j n B

k n k

t
n n








  ,         (141) 1160 
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where 
kt  are subintervals of the annealing time ta such that 1161 

A B

A

n n

a k

k n

t t




  .           (142) 1162 

To ensure linearity the intervals kt  must be small enough that 
fT  decays by less than about 1 1163 

K. Dividing the annealing time into five logarithmically even increments per decade is usually 1164 

satisfactory so that 
105log (s)B an t . However time increments of 0.2 decades can be too large 1165 

to ensure linearity during initial relaxation in some rapidly relaxing systems such as those 1166 

formed by extremely rapid cooling rates, or for the last stages of relaxation after very long 1167 

annealing times. These cases draw attention to themselves by changes in fT  that exceed ~1 K 1168 

per time subinterval and can be corrected by using shorter time increments. 1169 

 For the commonly computed combination of a stretched exponential for  t  and the 1170 

NM expression for 0  the explicit expression for ,f nT  for rate cooling and heating is 1171 

, 0 0,

1

1 exp /
n n

f n j k k k

j k j

T T T T Q




 

    
        
     

  ,      (143) 1172 

 
0,

, 1

1 **
expk

n f n

x hx h
A

RT RT




  
  

  

.        (144) 1173 

There is no requirement that kT  or kQ  be constant although they are usually made so for 1174 

convenience. The value of /fdT dT  is discretized as 1175 

, , 1

1

f f n f n

n n

dT T T

dT T T









.          (145) 1176 

The maximum values of /fdT dT  can be very large for annealed glasses and in these cases a 1177 

temperature step of 1 K in eq. (143) is too large. Hodge [130] corrected this problem by making 1178 

kT  an inverse function of  
1

/f k
dT dT


 for the previous step: 1179 

1 2

, 1 , 21

1

1 1 .

f fk k
k k

f k f kk

f

dT dTT T
T T

dT T T dT

dT

dT

 

 

   
      

   

 
  

 

     (146) 1180 

This procedure broke down when the rate of change of /fdT dT  was too large (more than 6 or 1181 

so). Prest et al. [153] used a self-consistency test for each calculation of ,f nT  in which the 1182 

magnitude of each temperature step was changed until the computed value of 0,k  became 1183 

independent of kT  to within a specified error amount. The maximum number of iterations was 1184 

usually two or three and the computation time did not increase substantially. 1185 

 Integration of eq. (143) is considerably faster than solving the KAHR differential 1186 

equations but it is still CPU intensive because the double exponentiation needed to evaluate the 1187 

stretched exponential function occurs in the innermost of two nested DO loops (corresponding 1188 

to the reduced time and Boltzmann summations). Scherer [154] and Rekhson [155] have 1189 
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reported (and the present writer can confirm) that a considerable saving in computing time is 1190 

gained if the decay function     is expressed as a weighted sum of exponentials. This 1191 

procedure is computationally more efficient because the memory effect is absent for each 1192 

exponential component. Each term for each component of the distribution is obtained by 1193 

multiplying the value at the beginning of a time step by  exp i , where i indexes the 1194 

component of the decay function. This is much faster than the addition of   to the argument 1195 

of the stretched exponential followed by exponentiation to the power   and computation of the 1196 

exponential function. In the program used by Hodge [130] a two dimensional array of  ig   1197 

values is specified in a DATA statement for values of   differing by 0.05, with intermediate 1198 

values of  ig   obtained by linear interpolation. Alternatively  ig   can be obtained by a 1199 

subroutine that least square fits    exp /i i

i

g t   to  exp /t


 
 

 for each iteration. 1200 

 The stretched exponential expression for  t  was first incorporated into the TN 1201 

formalism by Rekhson et al. [156]. However it should he clear from the exposition just given 1202 

that any form for  t  can be used and the box, wedge, Davidson-Cole, truncated stretched 1203 

exponential, and log Gaussian forms for  g   have all been applied to enthalpy relaxation 1204 

[112,113,157]. The stretched exponential has been used with the TN formalism more often than 1205 

these other expressions only because of its convenience and general accuracy and not because 1206 

the phenomenology demands it. 1207 

 1208 

4.3 The Ngai-Rendell (NR) Theory 1209 

 This theory [158] derives the stretched exponential decay function from basic principles 1210 

and thus attaches a fundamental significance to its functional form. The relaxation time 0  in 1211 

eq. (68) is a function of  : 1212 

 
1/

1 0

0 0c


             (147) 1213 

where c , 0

0  and   may depend on fT  (or  ). If only 0

0  or c  depends on fT  nonlinearity in 1214 

the TN sense is produced. The theory identifies the relaxation rate as the relevant variable and 1215 

the rate equation for the isothermal decay function  t  is 1216 

 
1

1

0

0 0

ln 1
c

d t
t

dt






 


 


 

  ,        (148) 1217 

where   and c have been assumed to be independent of time. In the linear case where 0  and 1218 
0

0  are also independent of time integration of eq. (148) yields the stretched exponential 1219 

function. The nonlinear decay function is obtained by inserting the isothermal time dependence 1220 

of 0  into eq. (148) and integrating: 1221 
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This differs from the TN nonlinear form 1223 
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t dt t
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whose differential 1225 
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         (152) 1227 

is not the same as eq. (148) when  0 0/ / 0fd dt d T t dt      .  1228 

 There is recent evidence that eq. (149) is inconsistent with Boltzmann superposition 1229 

[111,159] even for the linear case where 0 / 0fd dT  . For a simple thermal history of two 1230 

opposite temperature steps between which the temperature is so low that no significant 1231 

relaxation can occur, eq. (149) predicts a relaxation function that depends on the time between 1232 

temperature steps which is inconsistent with experimental observation. Consider a special case 1233 

of the history leading to eqs. (19) - (21) in which 2 0T T  is sufficiently above gT  that 1234 

equilibrium prevails [159]. The fictive temperature is given by an appropriately modified 1235 

version of eq. (19): 1236 

     0 1 21 , 1 ,fT t T T t t T t t                  (153) 1237 

where 0 1 2 1T T T T T     . Insertion of the NR expression for  t  (eq. (149)) into eq. (153) 1238 

yields 1239 

 
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.  (154) 1240 

The first integral of eq. (154) may be written as 1241 
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.      (155) 1242 

If 1T  is sufficiently low that no relaxation occurs in the time interval 2 1t t  the first term on the 1243 

right-hand side of eq. (155) is zero and eq. (154) becomes 1244 
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The two integrals in eq. (156) are not the same for 
1 2t t  so that a time dependence of 

fT  is 1246 

incorrectly predicted for 2t t . Thus the NR formalism predicts a memory effect even when the 1247 

response to the first temperature step has a negligible time dependence (Section 1.2.2). The TN 1248 

result for the same history is 1249 
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,      (157) 1250 

in accord with experiment. The Boltzmann superposition problem for NR is seen from eq. (156) 1251 

to reside in the choice of a correct zero for time that seems inherent in the selection of the time 1252 

dependent relaxation rate as the physically relevant variable.  1253 

 If  t  is expressed as a sum of exponentials the integrated version of eq. (148) can be 1254 

expressed as [113] 1255 
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However if the  i  are isothermally time dependent this expression does not go to zero in the 1257 

limit of long time [159]. This particular difficulty appears to arise from integrating the partial 1258 

derivative of  t  rather than the full derivative. It can be shown [11] for the simplified form of 1259 

 t  1260 
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that 1262 
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gives the correct physical limit   0t   . This difficulty is a separate issue from the 1264 

Boltzmann superposition problem. 1265 

 It must be emphasized that these difficulties with the NR approach are the subject of 1266 

ongoing research and may yet be resolved. They serve to emphasize once again, however, the 1267 

need for special care when dealing with relaxations that are both nonlinear and nonexponential. 1268 

1269 
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4.4 Evaluation of Parameters from Experimental Data 1270 

4.4.1 Activation Energy 1271 

 Values of *h  or θ are best evaluated from the cooling rate dependence of '

fT  1272 

determined before any annealing has occurred: 1273 

 
' 2

'

ln
* /

1/

c
f

f

d Q
T h R

d T
     .         (161) 1274 

Equation (161) is valid over a larger range of cooling rates than that expected from the 1275 

approximations used in its derivation. Scherer [9] has discussed this and associated issues 1276 

related to the temperature dependence of 0 . The theoretical consistency between eq. (161) and 1277 

the TN formalism has been demonstrated by Moynihan and coworkers [12,160] and for the 1278 

KAHR formalism by Kovacs et al. [47]. Equation (161) generally gives *h  to within 2% 1279 

although larger errors of the order of 10% occur when x and   are very small [111]. As noted 1280 

by Richardson and Savill [43], DeBolt et al. [160] and Hodge [130,161], the evaluation of *h  1281 

or θ from eq. (161) has three experimental advantages over other methods. (i) Thermal transfer 1282 

effects are largely integrated out. (ii) Temperature calibration is simplified because '

fT  is 1283 

determined from data measured at a single heating rate. In fact temperature calibration is not 1284 

required at all provided any temperature discrepancy is constant over the temperature range of 1285 

integration and does not drift with time. The need for temperature calibration is vitiated because 1286 

differentiation with respect to '

fT T  rather than '

fT  produces errors of the order '/ fT T  or a 1287 

few percent for ' 5KfT   and experimental uncertainties in the derivative in eq. (161) are 1288 

usually larger than this. (iii) The usable range of cooling rates is wider than that for heating rates 1289 

because no instrumental sensitivity limits are met at low cooling rates. A large range in cooling 1290 

rates is needed for accurate determinations of high values of *h  because the uncertainties in 1291 
'

fT  are fairly large (typically ±0.5 K for polymers, smaller for inorganics). 1292 

 A second method for determining *h  is to determine the heating rate dependence of 1293 

gT  (defined either as the midpoint or the onset value) for glasses heated at the same rate as the 1294 

cooling rate used to form them [90,160]. This method does not require integration of the heat 1295 

capacity curves but has some disadvantages. These include the need for temperature calibration 1296 

at several heating rates and a possible shift in gT  resulting from thermal transfer effects at high 1297 

heating rates (Section 2.1). 1298 

 Values of *h  can also be obtained in principle from least squares fits of the normalized 1299 

heat capacity but this method has its own special set of problems (Section 4.5). Values of *h  1300 

obtained by curve fitting are often less than those obtained from eq. (161). 1301 

 There are conflicting claims about whether accurate values of *h  can be obtained from 1302 

the heating rate dependence of gT  of glasses formed at a constant cooling rate. Tribone et al. 1303 

[162] reported that this method gave values for *h  that agreed with those obtained by keeping 1304 

c hQ Q  but Hodge [130] challenged this by asserting that calculations using known input 1305 

values of *h  yielded constant cQ  activation energies that were substantially less than the input 1306 

*h . 1307 

1308 
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4.4.2 Pre-exponential Factor 1309 

 The pre-exponential parameter A is fixed by *h  and '

fT . It is given to a first 1310 

approximation by eq. (133) but best values are obtained by matching calculated values of '

fT  1311 

with experimental values for whatever history is being parameterized (including those with 1312 

annealing). As has been emphasized by Moynihan and coworkers [42,160] it is very important 1313 

that the experimental and calculated values of '

fT  be matched to ensure a self-consistent set of 1314 

parameters (Section 4.5). 1315 

 1316 

4.4.3 Nonexponentiality 1317 

 By far the most frequently used method for obtaining nonexponentiality parameters from 1318 

experimental data is the curve fitting method described below. Because of the intricacy of the 1319 

phenomenology, and the possibility of systematic experimental error it is probably asking too 1320 

much at the present level of development to determine the components of  g   from 1321 

experimental data. To date a specific functional form for  g   or  t  has always been used 1322 

(most often the stretched exponential function) and best fit estimates obtained for a single shape 1323 

parameter (e.g. β). The assumption of a specific functional form for  g   or  t  is not ideal 1324 

but seems inescapable at the present time. Hutchinson and Ruddy [163] suggested that, given 1325 

values of x and  , a nonexponentiality parameter can be estimated from the value of ,max

N

pC  as a 1326 

function of /c hQ Q . This method is attractive because it uses the same histories as those needed 1327 

to determine   or Δh*. It has been used by Hutchinson [96] to determine the stretched 1328 

exponential parameter for poly(vinylchloride) (PVC), polystyrene (PS) and three Ag-Te-MoO4 1329 

glasses. 1330 

 1331 

4.4.4 Nonlinearity 1332 

 Several methods have been proposed for determining the KAHR and NM nonlinearity 1333 

parameter x from heat capacity data obtained for different thermal histories. Some of the 1334 

proposed methods are incorrect and others have particular difficulties or a restricted range of 1335 

validity. 1336 

 1337 

4.4.4.1 Annealing Method.  1338 

 Moynihan et al. [164] used a method that exploited thermal histories for which the decay 1339 

function could be approximated as an exponential. As with some of the other methods described 1340 

here this has so far only been applied to one material. In this case however the value of x agreed 1341 

with that found by curve fitting under conditions in which the curve fitting method was believed 1342 

to be valid. The annealing method is based on the expansion of a nonexponential decay function 1343 

as a weighted sum of exponentials. For short annealing times only the shortest retardation time 1344 

component 1  contributes to the relaxation and the decay is approximately exponential. The 1345 

weighting factor for this component 1g  is the same as that for the component of fT , 1fT , that 1346 

relaxes with time constant 1  and is estimated from the fraction of relaxation that occurs after 1347 

long annealing times: 1348 
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The time dependence of  fT t  is then given by 1350 
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where  1 t  is given by 1352 
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For the material being studied (a ZBLA glass) the value of *h  obtained from eq. (161) was 1354 

sufficiently large that differences in i  gave rise to relatively small changes in fiT  compared 1355 

with    0f f aT T t . Thus 1356 

fi fT T    for all i           (165) 1357 

and eq. (163) simplified to 1358 
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The parameters x and Ai are now the only unknowns and can be obtained by fitting eqs. (164) 1360 

and (166) to experimental values of  fT t . Note that eqs. (162) and (166) are consistent because 1361 

for long annealing times the exponential decay falls to zero and 1362 
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        (167) 1363 

so that a fraction 1g  of the maximum possible change in fT  has occurred. Some judgment must 1364 

be made as to how short the annealing time needs to be for eq. (163) to be valid. In principle 1365 

different values for at  could be chosen to establish a range in x but this has not yet been 1366 

attempted. 1367 

 1368 

4.4.4.2 Method of Curve Shifting.  1369 

 Hutchinson and Ruddy [91] determined x by exploiting two theoretical results. Both the 1370 

KAHR and TN phenomenologies predict that for scans of unannealed glasses for which the ratio 1371 

of cooling to heating rates is constant the normalized heat capacity curves shift to higher 1372 

temperatures with increasing heating rate but do not change shape. Deviations from this 1373 

prediction are attributed to thermal transfer effects. After corrections for these effects have been 1374 

applied x is obtained from a second theoretical result, that a unique function  F x  describes the 1375 

shift in peak temperature pT  with respect to Qc, Qh, Ta and the enthalpy lost during annealing 1376 

[90,162,165-167]: 1377 
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/ 0p aT T   ,           (169) 1379 

where   (eq. (30) is the enthalpy lost during annealing between times tl and t2: 1380 
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The partial derivatives are by definition evaluated by holding all other variables constant and 1382 

this can be done with experimental ease only for the derivatives with respect to   and Qh, or 1383 

with respect to Qc if no annealing occurs between cooling and reheating. The Qh derivative is 1384 

subject to all the disadvantages associated with heating rate methods (see above) but the 1385 

derivative with respect to Qc can be obtained from the same experiments needed to determine 1386 

Δh* or   (eq. (161)). The derivative with respect to   has only the minor disadvantage, shared 1387 

by most of the methods described here, that time consuming long anneals are needed to ensure 1388 

(a) the shift in Tp is large enough for an accurate determination of the derivative, and (b) the 1389 

peak is due to annealing. Under these conditions the peak heights can be very large and 1390 

corrections for thermal transfer become important. Analysis of the published plot of F(x) [91] 1391 

reveals that it can be approximated as 1392 

   1/ 1F x K x    .          (171) 1393 

The value of K is a weak function of the distribution of retardation times, decreasing from 0.87 1394 

for an exponential decay to 0.75 for a stretched exponential with β = 0.456. Most values of β 1395 

exceed 0.46 (Table 1) so the approximation that F(x) is independent of  lng   is a good one. 1396 

Moreover the variation that occurs does so in a region where F(x) changes rapidly with x so that 1397 

estimates of x are insensitive to uncertainties in F(x). An approximate mathematical analysis 1398 

predicts K= 1 [91,168]. Hutchinson and Ruddy [91,163] applied this method to polystyrene and 1399 

obtained a value of 0.48 for x that is in excellent agreement with values obtained by other 1400 

researchers, mostly by curve fitting (Section 4.5). 1401 

 1402 

4.4.4.3 Temperature Step Method 1403 

 This method was proposed by Lagasse et al. [169] for the analysis of volume recovery 1404 

data. It has not yet been applied to experimental volume or enthalpy relaxation data and has 1405 

been criticized by Hutchinson and Kovacs [170], but is included here for the sake of 1406 

completeness. The method was originally described in terms of the KAHR phenomenology 1407 

which we augment here with the equivalent TN expressions. The method uses two temperature 1408 

steps of different magnitudes but same sign, 1 2T T  at 0t   and 2 3T T  at at t   1 2 3T T T   1409 

and extracts x from the limiting ratios 
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 for different 1410 

magnitudes of the second jump at ta. The ratio of the relaxation times is given by 1411 
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4.4.4.4 Heating Rate Dependence of 
gT  1414 

 This method [171,172] has been criticized by Crichton and Moynihan [173], Hutchinson 1415 

and Ruddy [174] and Hutchinson [175], but is included here to illustrate some of the pitfalls in 1416 

analyzing nonexponential and nonlinear enthalpy relaxations. The principal criticism is that the 1417 

method does not properly account for the memory effect associated with nonexponentiality. The 1418 

method centers around an equation derived from the simplification that 
fT  remains unchanged 1419 

during scanning until '

f fT T T   is reached, but this approximation is valid only for 1420 

unannealed glasses formed at very slow cooling rates that are difficult or impractical to achieve. 1421 

Using calculated /fdT dT  data Crichton and Moynihan [173] obtained values of x using this 1422 

method that differed greatly from the input values. For  4*/ 5 10 K, 0.5h R x      values 1423 

of x evaluated by this method ranged between 0.63 and 0.97, depending on history. If gT  was 1424 

defined as the inflection point of the heat capacity rise, slow cooled and annealed glasses 1425 

produced values for x of 0.63 - 0.65, consistent with each other but again different from the 1426 

input value. Crichton and Moynihan observed that these estimated values of x would  seem very 1427 

reasonable to someone who did not know the correct input values. Hutchinson and Ruddy [174] 1428 

showed that this method, using slow cooling rates, was equivalent to their peak shift method 1429 

[91] using annealing (Section 4.4.4.2). Both methods depend on the glass being close to 1430 

equilibrium  f aT T  but Hutchinson and Ruddy noted that this condition is difficult to achieve 1431 

without annealing. This objection is consistent with the criticism of Crichton and Moynihan 1432 

because glasses that are close to equilibrium have almost erased the effects of their thermal 1433 

history and therefore do not exhibit strong memory effects. 1434 

 1435 

4.4.4.5 Adam-Gibbs 2T   1436 

 Good estimates of 2T  can be made if gT  and the NM parameters are known using eqs. 1437 

(113) and (116). The accuracy of these equations has been demonstrated by several researchers 1438 

[86,113,130,133,154,157]. Values of 2T  can also be obtained by the curve fitting methods 1439 

described next. 1440 

 1441 

4.5 Curve Fitting Techniques  1442 

 Enthalpy relaxation parameters can be obtained from experimental heat capacity data 1443 

using computer assisted visual fitting [160], or nonlinear regression optimization methods 1444 

[86,161]. The simplest technique is to compare experimental and calculated heat capacity curves 1445 

with trial and error changes in parameters. This method was used in the early work of the 1446 

Moynihan school and produced estimated uncertainties in x and   of ±0.05. In the past few 1447 

years it has become increasingly common to use the multidimensional Marquardt [176] 1448 

optimization algorithm, first applied to enthalpy relaxation by Hodge and Huvard [177]. This 1449 

optimization technique changes continuously from the method of steepest descents when the fit 1450 

is far from optimum to the Newton-Raphson method when the optimum is approached. A user 1451 

specified objective function   is minimized in a multi-parameter search space that is bounded 1452 

by user specified parameter limits. A FORTRAN algorithm has been published [178]. To date 1453 
  has always been specified by the residual sum of squared differences between 1454 
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experimentally observed and calculated normalized heat capacities: 1455 
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This objective function places most weight on the largest values of N

pC  that occur in the 1457 

overshoot region, which is not entirely satisfactory because thermal transfer problems are most 1458 

significant for high overshoot heat capacity data. A better expression for   that would not 1459 

introduce other problems, for example sensitivity to the choice of  pgC T  for small values of 1460 

N

pC , is not evident although defining   as the logarithm of the sum of squared residuals is an 1461 

interesting possibility (set to zero for sums less than unity, so that an appropriate scaling factor 1462 

would be needed). Sales [86] applied an optimization algorithm due to Bevington [179]. The 1463 

Marquardt and Bevington algorithms are hard pressed to optimize all four parameters of the 1464 

standard TN formalism because the parameters are strongly correlated [130,161]. Reliable and 1465 

history invariant values of β can usually be obtained from four parameter optimizations but the 1466 

parameters x and Δh* often vary with thermal history. A better procedure is to use a three 1467 

parameter optimization by fixing one of the parameters, preferably Δh* obtained from eq. (161). 1468 

When Δh* is fixed the value of ln A is tightly constrained because variations in it shift the heat 1469 

capacity curve along the temperature axis, and even small shifts produce large changes in   1470 

because of the steepness of the heat capacity curves near gT . In addition, ln A and Δh* together 1471 

determine '

fT  which should be matched to the experimental value to ensure consistency. The 1472 

parameter search space is then two dimensional and x and β can be obtained quickly. If desired 1473 

the fourth parameter can be estimated from the minimum in   although this is often quite broad 1474 

and its position can shift with thermal history. In these cases it is commonly found that β is 1475 

fairly constant across the minimum but that β changes systematically with Δh* to produce 1476 

values of *x h  that are almost constant. 1477 

 Hodge and Huvard [177] found that the best fit value of Δh* for PS obtained from the 1478 

minimum in   was the same as that found from the cooling rate dependence of '

fT . Hodge 1479 

[161] also observed consistent values obtained by the two methods. Others have reported that 1480 

values of *h  obtained by curve fitting are less than those determined from eq. (161). 1481 

Substantially smaller values were reported by Prest et al. [153] for PS. They found that Δh* 1482 

obtained by several methods of analysis of the cooling rate and heating rate dependences of '

fT  1483 

were self-consistent but were about a factor of 2 larger than those found by curve fitting. The 1484 

only significant difference between the data sets of Hodge and Huvard and of Prest et al. is the 1485 

ratio of heat to coding rates (0.25 and 1 respectively), so it seems that thermal transfer effects 1486 

may be significant.  1487 

 Adam-Gibbs parameters can also be obtained using Marquardt or similar optimizations 1488 

[86,113,130,133,154,157] but, as with the NM equation, four parameter optimizations are not 1489 

practical. For three parameter optimizations it is not clear whether Q or 2T  should be fixed 1490 

because both Q and 2T  determine x and Δh*. Hodge [130] reported that three parameter 1491 

Marquardt optimizations performed by fixing 2T  were less dependent on starting estimates of 1492 

the parameters and less likely to become caught in local minima than optimizations in which Q 1493 
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was fixed. Sales [86] also fixed 
2T  in his optimizations using the Bevington algorithm and 1494 

obtained a best fit 
2T  from the minimum in  . 1495 

 1496 

4.6 Thermal Transfer Effects and High Overshoot Data 1497 

 The experimental sources for these effects were discussed in Section 2.1.3. They are 1498 

most severe for the highest overshoot data although as noted earlier Hutchinson and coworkers 1499 

have raised questions about the validity of applying curve fitting methods to all experimental 1500 

data. These investigators found that heat transfer effects shift 
maxT  to higher temperatures for 1501 

heating rates greater than about 20 K min-1 (in addition to the well-recognized effect of heating 1502 

rate on temperature calibration), and calculations by the present writer using eqs. (57) - (60) 1503 

confirm this shift [111]. Thermal transfer effects were also recognized by Hodge [130,161] who 1504 

averaged parameters from low overshoot data obtained at 10 K min-1 and assessed predictions of 1505 

long aging time behavior by comparing experimental and calculated values of '

fT . O’Reilly and 1506 

Hodge [89] observed that x and β for PS varied strongly with thermal history and that these 1507 

variations occurred using a heating rate (1.25 K min-1, with signal averaging) at which heat 1508 

transfer effects were negligible. They concluded that the phenomenology was deficient and 1509 

suggested that the methods for describing nonlinearity were incorrect. Moynihan et al. [113] 1510 

also concluded that the treatment of nonlinearity is imperfect (See Section 7). 1511 

 High overshoot data also provide challenges to the approximations inherent in numerical 1512 

integrations, and other simplifications. These include the following: 1513 

(1) Selection of a suitably small time subinterval during long anneals. In some cases 0.2 decades 1514 

is too long (Section 4.2). 1515 

(2) Temperature steps used for Boltzmann summations must be sufficiently small. The need for 1516 

small temperature steps is especially important in the overshoot region (see eq. (146) for 1517 

example) but, in some circumstances, temperature steps of 1 K can also be too large during 1518 

cooling, or heating below the main transition temperature range. 1519 

(3) The approximate equivalence between /fdT dT  and N

pC  may break down. However it is 1520 

unlikely that any difference is more than a few percent (Section 1.2.3). 1521 

 The relative importance of experimental and computational difficulties in handling high 1522 

overshoot data is not known with any confidence. Thermal transfer effects may be smaller for 1523 

inorganics than for polymers because their glass transitions occur over a wider temperature 1524 

range [113] and their thermal conductivities are higher. However there is increasing agreement 1525 

that the thermal history dependence of model parameters is due to a real deficiency in the 1526 

current phenomenologies rather than thermal transfer effects. Nevertheless a better quantitative 1527 

assessment of thermal transfer effects is desirable before the accuracy of alternative 1528 

phenomenologies can be properly assessed. 1529 

 1530 

4.7 Nonthermal Histories 1531 

4.7.1 Hydrostatic Pressure 1532 

 Hodge and Berens [180] used a simplified method for introducing hydrostatic pressure P 1533 

that was adequate for their purposes but is not rigorous enough to be regarded as a general 1534 

method. They noted that P lengthens the enthalpic retardation time and suggested three ways for 1535 

introducing this. The logarithm of the pre-exponential factor ln A or the NM activation energy 1536 

Δh* can be increased in direct proportion to P, or a shift in fT  can be used. In the last case the 1537 
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equilibrium condition is redefined as 
fT T KP   where K is a positive constant so that the 1538 

usual equilibrium condition 
fT T  only holds for P = 0. It was assumed that the nonlinearity 1539 

parameter x and the stretched exponential parameter β were independent of P. The shift in 
0  1540 

with P was estimated from the enthalpic Ehrenfest relation eq. (49), repeated here in a modified 1541 

form for convenience: 1542 

   / /g g g pH
T P V T C              (174) 1543 

where Vg is the volume at gT . The constancy of H in eq. (174) corresponds to fixed fT  and in 1544 

the approximation 
f gT T T   one has 1545 
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Partial differentiation of the NM equation under these conditions yields 1547 

0 2

**
ln

f

g

T
g p

x h Vx h
d dT dP

RT RT C




  
 


.        (176) 1548 

The corresponding changes in ln A, Δh* and fT  are 1549 
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For a f gT T T T    the right-hand sides of eqs. (176) - (179) are multiplied by a factor of order 1554 

(T2/Ta)
2 [180] obtained by replacing 

2T  with 2

aT  in eq. (176) and retaining gT  in eq. (174). None 1555 

of these equations are readily generalized to arbitrary temperature and pressure histories, 1556 

although pressure scans at constant temperature could presumably be approximated by ramping 1557 

ln A. 1558 

 Ramos et al. [181] adopted a more rigorous method for introducing pressure into the 1559 

KAHR formalism. They wrote 1560 
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where   is an order parameter (not the reduced time), and then neglected the first two terms for 1562 

small  . The time dependence of the components i  is given by 1563 
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where the exponential decay of each i  has been introduced. For changes in both T and P the 1565 

shift factor a  is given by 1566 
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 2/P f gb f P  ,           (183) 1568 

where b is a constant and 
f  is the pressure coefficient of the free volume 

,T Pf . Gupta [80] 1569 

introduced pressure into structural relaxation phenomenology by considering a fictive pressure 1570 

in addition to the fictive temperature. 1571 

 1572 

4.7.2 Mechanical Stress and Vapor Induced Swelling 1573 

 The only attempt to introduce these perturbations into enthalpy relaxation 1574 

phenomenology was made by Hodge and Berens [180]. They considered annealing of 1575 

poly(vinyl chloride) (PVC) that had been exposed to mechanical stress (near or above the yield 1576 

stress), or to swelling induced by solvent vapor absorption followed by rapid desorption. 1577 

Annealing took place after the release of these nonthermal perturbations. It was assumed that the 1578 

treatments increased fT  instantaneously (a reasonable assumption given the rapid application 1579 

and release of stress or solvent vapor) by an amount fT  that decayed with reduced time during 1580 

subsequent annealing and reheating. This decay was assumed to be described by the same 1581 

relaxation parameters as the thermal history and was superimposed on the response to the purely 1582 

thermal history. Good agreement with experimental data was obtained using values of fT  that 1583 

increased linearly with the applied perturbation (stress or solvent vapor pressure). In particular 1584 

the calculations reproduced the experimental result that only the sub- gT  endotherm peak heights 1585 

and not the peak temperatures were affected by the applied perturbations. 1586 

 1587 

5 Experimental Results 1588 

 In this section we restrict our attention to qualitative experimental results and defer a 1589 

discussion of relaxation parameters to Section 6. 1590 

 1591 

5.1 Scanning Calorimetry 1592 

5.1.1 Enthalpy Recovery Near gT  1593 

 Simple cooling and reheating histories produce heat capacity curves during heating that 1594 

exhibit an increase in pC  over the glass transition range followed by a maximum and a decrease 1595 

to the equilibrium liquid or rubber value. Exceptions to this are seen in glasses with high values 1596 

of '

fT  produced by very fast cooling rates, such as in splat quenching, vapor deposition or 1597 

quenching of fine fibers. Slow scans of these glasses exhibit exothermic dips in the heat 1598 

capacity just before the increase in pC  at gT . These exotherms occur because the relatively high 1599 

value of '

fT  produced by a fast quench greatly shortens the average retardation time and during 1600 

the slow reheat fT  has time to relax towards the equilibrium state defined by fT T  from 1601 

values fT T . This relaxation produces negative values of /fdT dT  and an exothermic 1602 

excursion below the glassy heat capacity. The phenomenon is illustrated in Fig. 1(B). The 1603 

exotherm can be suppressed by decreasing the high initial values of '

fT  by annealing below gT . 1604 



Page 49 of 79 

For the more common simple overshoot the equilibrium condition 
fT T  is reached before any 1605 

relaxation can occur and /fdT dT  remains positive as 
fT  approaches the equilibrium 

fT T  1606 

line from values 
fT T  (Fig. 1(A)). 1607 

 1608 

5.1.2 Isothermal Annealing 1609 

 Enthalpy lost during annealing is usually (but not always) recovered near 
gT  during 1610 

reheating, producing the familiar high overshoot in annealed glasses. Pioneering studies of this 1611 

phenomenon were made by Volkenstein and Sharonov [182], Foltz and McKinney [183] and 1612 

Petrie [184], all of whom demonstrated that the magnitude of the overshoot was a quantitative 1613 

measure of the enthalpy relaxation that had occurred during annealing. Other quantitative 1614 

studies were reported by Straff and Uhlmann [185], O’Reilly [186], Ali and Sheldon [187] and 1615 

Ophir et al. [188]. The number of papers containing qualitative statements about annealing 1616 

peaks near gT , either as the primary area of study or as part of a larger investigation, is immense 1617 

and no useful purpose would be served by citing them all. Every study of which this writer is 1618 

aware reveals that enthalpy recovery near gT responds to changes in annealing conditions the 1619 

same as enthalpy recovery in the glassy state, discussed in the next section. Thus we discuss 1620 

here only those studies of enthalpy recovery near gT  that are of special interest or novelty, or 1621 

illustrate the variety of materials studied. The selection is inevitably subjective. 1622 

 Ten Brinke and coworkers [189,190] applied results from enthalpy relaxation 1623 

phenomenology to blends of PVC/poly(isopropyl methacrylate) (PVC/P(iPr)MA), 1624 

PVC/poly(methyl methacrylate) (PVC/PMMA), and PS/poly(2-vinyl pyridine) (PS/PVP), and 1625 

showed that the miscibility or immiscibility of components with closely similar gT  could be 1626 

established if appropriate annealing histories were used. For the PS /PVP blends [190] for which 1627 

the gT  of the PS and PVP used were 106 and 100°C respectively, annealing at 91°C for longer 1628 

than 6 h produced two heat capacity maxima that became increasingly better resolved as 1629 

annealing times increased to a month or so, demonstrating that PS and PVP are immiscible. The 1630 

better resolution at longer annealing times occurred because PVP reached its equilibrium state 1631 

after only relatively short annealing times at 9°C below its gT , producing an annealing peak that 1632 

did not shift with further annealing, whereas the annealing peak for PS continued to move to 1633 

higher temperatures even after long annealing times at 15°C below its gT . For the PVC blends 1634 

[189] a separate PVC phase could easily be identified because annealing of PVC produced sub-1635 

gT  peaks that were easily distinguished from the more usual overshoots for PMMA and 1636 

P(iPr)MA. Quan et al. [191] used enthalpy relaxation to experimentally characterize the 1637 

interfacial regions of a styrene-hydrogenated butadiene-styrene triblock copolymer. Ten Brinke 1638 

[192] showed that Quan’s results could be reproduced by the TN formalism but noted some 1639 

complications associated with estimating the amount of interfacial material. Cowie and 1640 

Ferguson [57] investigated annealing in blends of PS and poly(vinyl methyl ether) (PVME). 1641 

They observed heat capacity maxima in the middle of the glass transition and reported that the 1642 

PVME component annealed independently of the PS component. Mijovic and coworkers 1643 

[193,194] investigated blends of PMMA and SAN (styrene-co-acrylonitrile). The annealing 1644 

rates for SAN rich blends were slightly faster for anneals 20 and 35°C below gT  but at 50°C 1645 
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below 
gT  the rates were independent of composition. The response to different annealing 1646 

temperatures also changed with blend composition. Gomez-Ribelles et al. [55] studied enthalpy 1647 

relaxation in PVC plasticized with dioctyl phthalate (DOP). They reported that only some of the 1648 

polymer was plasticized (i.e. showed a decrease in gT  with increasing DOP content), with the 1649 

remainder showing a concentration-independent 
gT  (albeit very weakly with   0.01p gC T   J 1650 

g-1). Their plots also exhibited the extremely broad melting endotherms just above 
gT  associated 1651 

with the crystallinity of this material [195]. The breadth of the melting endotherm is due to the 1652 

extremely small average size, but not unusual size distribution, of crystallites that are subject to 1653 

large surface contributions to the crystal free energy. (The small amount of crystallinity is 1654 

responsible for the toughness of PVC and crystallinity is not reduced by plasticization of the 1655 

predominant amorphous phase). 1656 

 Johari and Mayer and coworkers [196 - 198] annealed vapor deposited water and 1657 

hyperquenched aqueous solutions just below their gT  to remove the large exotherm resulting 1658 

from the high initial '

fT . This enabled the observation of glass transitions in the presence of 1659 

large ice crystallization exotherms just above gT . Gupta and Huang [199] investigated enthalpy 1660 

relaxation and recovery in slowly cooled bulk samples and rapidly cooled fibers (8-12 μm 1661 

diameter) of a soda-lime-silicate glass. They observed the usual exotherm below gT  for the 1662 

rapidly quenched and slowly reheated fibers but were unable to fit the TN model to these 1663 

histories. Warner [200] observed enthalpy relaxation in some thermotropic anthraquinone 1664 

polymers, and Hedmark et al. [201] reported annealing endotherms in a liquid crystalline 1665 

polyester copolymer. Petrie [202] reported enthalpy relaxation effects in nonpolymeric 1666 

mesogens. These observations are consistent with other parallels between the glass transition 1667 

and thermotropic transitions in liquid crystals [20]. Stephens [203] described annealing 1668 

endotherms in amorphous Se as a function of annealing time and temperature. The enthalpy loss 1669 

on annealing increased linearly with log ta in the usual manner (see next section), and a plot of 1670 

data taken from the published figure exhibits the usual approximately linear increase with aT  1671 

(also see next section). Ma et al. [204] observed annealing endotherms and shifts in gT  with 1672 

annealing time in a series of chalcogenide glasses containing Te as a common component. 1673 

Changes in gT , the breadth of the glass transition, and in annealing behavior were observed as a 1674 

function of average coordination number (defined by composition). Tatsumisago et al. [205] 1675 

observed a minimum in the enthalpic activation energy as a function of average coordination 1676 

number in a series of Ge-As-Se glasses. Koebrugge et al. [206] observed annealing endotherms 1677 

in a metallic glass of composition Pd40Ni40P20 that increased in magnitude with annealing time. 1678 

Sommer et al. [207] studied the enthalpy lost during annealing of amorphous alloys of 1679 

composition Cu67Ti33, Cu50Ti50, Cu34Ti66, Ni33Zr67 and Pd26Zr74 as a function of annealing time. 1680 

The lost enthalpy increased linearly with log ta at short annealing times and reached constant 1681 

values at long times, consistent with the annealed glasses reaching the equilibrium state at long 1682 

times. 1683 

1684 
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5.1.3 Sub-
gT  Endotherms 1685 

5.1.3.1 Thermal Histories 1686 

 The occurrence of heat capacity peaks well below 
gT , defined for present purposes as 1687 

the midpoint of the glass transition for unannealed glasses (Fig. 1(A)), was first reported (for 1688 

PVC) by Illers in 1969 [208]. Gray and Gilbert [209] also observed sub-
gT  heat capacity peaks 1689 

in annealed PVC. Chen and Wang [210] reported a well developed shoulder just below 
gT  in PS 1690 

annealed for 260 h at 320 K (50 K below 
gT ). Hutchinson and Ruddy [166] observed sub-

gT  1691 

peaks in PS, as did Ruddy and Hutchinson [211] in rapidly quenched PS that had been annealed 1692 

at 333 K for more than about 48 h. Wysgoski [212] observed sub-
gT  endotherms in annealed 1693 

ABS (acrylonitrile-butadiene-styrene) and SAN (styrene-acrylonitrile) copolymers and found 1694 

that they became more intense and moved to higher temperatures with increased annealing 1695 

temperature, until at 20Ka gT T   the endotherms merged with the familiar gT  overshoot. 1696 

Berens and Hodge [213] observed similar behavior in rapidly quenched and annealed PVC and 1697 

reported an increase in both peak height and peak temperature with increasing annealing time. 1698 

Qualitatively similar but smaller sub- gT  peaks have been observed in B2O3 [214], and sub- gT  1699 

shoulders have also been reported in zirconium fluoride based glasses [112,164]. Hodge 1700 

[130,161] observed a well-developed sub- gT  heat capacity peak and a shoulder just below gT  1701 

for two annealing histories in atactic PMMA, as did Ribelles and coworkers [215,216]. Ribas 1702 

[217] observed sub- gT  peaks in epoxy resins. Hofer et al. [218] observed sub- gT  peaks in 1703 

annealed hydrogel glasses of aqueous lithium chloride and ethylene glycol solutions imbibed in 1704 

poly(2-hydroxy-ethyl methacrylate). The bulk solutions exhibited the more common overshoots 1705 

in the glass transition range. Senapati and Angell [219] observed sub- gT  endotherms in mixed 1706 

anion glasses in the system 60AgI-(40 - y)Ag2SO4-yAg2WO4 for y values near 20, after 1707 

annealing well below gT . For y values near 0 and 40 annealing produced overshoots above gT . 1708 

McGowan et al. [220] observed sub- gT peaks in some main chain nematic polymers. Altounian 1709 

et al. [221] observed endothermic peaks in annealed Fe-B metallic glasses, and Chen [222] 1710 

observed annealing induced sub- gT shoulders in an amorphous metal alloy (composition 1711 

Pd48Ni32P20). Sub- gT  endothermic peaks with exothermic minima between them and the glass 1712 

transition have been observed in several metallic glasses. The exotherm results from the 1713 

nonequilibrium glass approaching the equilibrium fT T  line from above, commonly observed 1714 

in rapidly quenched glasses heated at relatively slow heating rates (Fig. 1(B) and Section 5.1.1). 1715 

The annealing endotherm is superimposed on, and thus attenuated by, this exotherm. 1716 

Representative examples of these effects have been reported in a series of papers by Inoue, 1717 

Chen and Masumoto for (Pd0.86Ni0.14)83.5Si16.5, a series of (Fe, Co,Ni)75Si10B15 alloys [224], 1718 

several Zr-Cu-Fe and Zr-Cu-Ni compositions [225] and in (Fe0.5Ni0.5)83P17 and (Fe0.5Ni0.5)83B17 1719 

[226].  1720 

 These observations testify to the occurrence of sub- gT  endotherms in a wide variety of 1721 

glasses. Such behavior was first explained in terms of enthalpy relaxation and recovery by 1722 

Kovacs et al. [47]. Quantitative fits of the TN phenomenology to experimental data were first 1723 

given by Hodge and Berens [152], who found that the endotherms were most easily produced in 1724 



Page 52 of 79 

materials with the most extreme nonexponentiality (broadest distribution of retardation times). 1725 

These authors, as well as others [48], suggested that the phenomenon was a manifestation of the 1726 

memory effect. Sufficient data have been published to establish some clear experimental trends 1727 

[130,l61]: 1728 

(1) The sub-
gT  peak temperature 

maxT , the decrease in 
fT  during annealing 

fT , and the peak 1729 

height 
,max

N

pC  all increase approximately linearly with log ta at constant Ta and short ta. At long 1730 

ta these quantities approach limiting values as the annealed glass approaches the equilibrium 1731 

state and the sub- gT  peaks evolve into overshoots. 1732 

(2) The quantities maxT , fT  and ,max

N

pC  increase linearly with aT  at constant at  when a gT T . 1733 

At 20Ka gT T  , fT  and ,max

N

pC  pass through a maximum. These maxima occur because at 1734 

higher aT  the annealed glasses reach the equilibrium state  f aT T  and the difference between 1735 

'

fT  and aT  decreases to zero as aT  approaches gT . 1736 

(3) Faster cooling rates before annealing increase ,max

N

pC  but have little effect on maxT . 1737 

Nonthermal perturbations applied and released before annealing produce similar behavior (see 1738 

next section). 1739 

 Sub- gT  endotherms are superimposed on the glass transition heat capacity ‘background’ 1740 

observed at the same cooling and heating rates but without intervening annealing. This 1741 

superposition is clearly seen in published heat capacity curves such as those for PS [210], 1742 

zirconium fluoride based glasses [112,164], and PVC [213, 227]. It is also evident in calculated 1743 

curves [32,152]. This phenomenon is surprising at first glance since it might be expected that 1744 

the nonlinear kinetics would couple the glass transition to changes in fT  induced by annealing. 1745 

The apparent absence of coupling can be rationalized by noting that the effective reduced times 1746 

for the annealing and glass transition processes are different. The glass transition and sub- gT  1747 

peaks are Boltzmann superimposed responses to two separate perturbations: cooling through the 1748 

glass transition and annealing. The long average retardation times associated with low annealing 1749 

temperatures produce short reduced times and these promote sub- gT  peaks. In these 1750 

circumstances only the shorter retardation time components of the distribution relax and partial 1751 

recovery occurs in the glassy state. Thus materials with more nonexponential decay functions, 1752 

corresponding to broader distributions with a greater proportion of very short retardation time 1753 

components show an increased tendency to produce sub- gT  endotherms. At longer reduced 1754 

times produced by longer anneals and/or by higher annealing temperatures, and shorter average 1755 

retardation times, the reduced timescale for annealing lengthens and approaches the 1756 

characteristically long reduced times associated with the glass transition. In these circumstances 1757 

the sub- gT  annealing peak merges with the glass transition and the glass transition begins to be 1758 

affected by annealing, as noted by Hutchinson and Ruddy [91] for example. At still longer 1759 

annealing times enthalpy recovery is manifested as the familiar high overshoot above gT . 1760 

 The reproduction of sub- gT  endotherms and their behavior with respect to annealing 1761 

conditions by the KAHR and TN phenomenologies indicates that these endotherms are indeed a 1762 

manifestation of enthalpy relaxation and recovery, and are not due to changes in crystallinity or 1763 

the development of qualitatively different molecular structures. Nor are they the result of 1764 
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secondary relaxations that are somehow manifested as heat capacity anomalies by annealing, 1765 

since the endotherms can be calculated assuming unimodal distributions. 1766 

 1767 

5.1.3.2 Nonthermal Histories. 1768 

 Sub-
gT  endotherms also occur in polymeric glasses that have experienced hydrostatic 1769 

pressure perturbations, undergone mechanical deformation, or been exposed to solvent or vapor 1770 

treatments. Weitz and Wunderlich [228] observed sub- gT  peaks in PS and PMMA samples that 1771 

had been cooled under pressure to form densified glasses and then reheated under atmospheric 1772 

pressure. At low pressures a simple reduction in overshoot was observed with the sub- gT  peaks 1773 

appearing only at pressures above 200 MPa. At the highest pressures (345 MPa) a broad 1774 

exotherm developed between the sub-
gT  peak and 

gT . Although annealing was not intentionally 1775 

introduced in these experiments the samples were stored in a freezer for a day or more between 1776 

cooling and heating, or were at or near room temperature for at least the time required to 1777 

transfer samples from the pressure vessel to the calorimeter. Modeling calculations suggest [32] 1778 

that unusually high fictive temperatures can be attained following pressure release and that 1779 

significant relaxation can occur in a few minutes at room temperature, so it seems reasonable to 1780 

speculate that some annealing could have occurred during sample transfer. The exotherms 1781 

observed for the highest pressure densified glasses are characteristic of rapidly cooled and 1782 

slowly reheated glasses and are also consistent with a high fictive temperature being generated 1783 

by release of the high pressures applied during cooling. These data are qualitatively similar to 1784 

those found in splat quenched and annealed metals, discussed earlier. Nonpolymeric materials 1785 

(phenolphthalein, sucrose, KNO3/Ca(NO3)2) exhibited only a decrease in overshoot with 1786 

increasing pressure, presumably because of the less nonexponential decay functions (narrower 1787 

distributions) for these materials. Similar results to those observed by Weitz and Wunderlich for 1788 

PS and PMMA were reported for PS by Richardson and Savill [227], Yourtee and Cooper [229], 1789 

Dale and Rogers [230] and Brown et al. [231], and for PMMA by Kimmel and Uhlmann [232] 1790 

and Price [233]. Wetton and Moneypenny [234] observed sub- gT  peaks in pressure densified 1791 

PVC, PMMA, PS, poly(4-methoxystyrene), po1y(3-chlorostyrene) and poly(4-chlorostyrene). 1792 

Prest and coworkers [235,236] reported sub- gT  endotherms in pressure densified PVC and 1793 

observed that they became more asymmetric and moved to slightly lower temperatures with 1794 

increasing pressure. Hutchinson et al. [237] observed a sub- gT  endotherm in an annealed sample 1795 

of a pressure densified silver iodomolybdate glass. 1796 

 Sub- gT endotherms have also been observed in polymers subjected to various mechanical 1797 

stresses. Prest and Roberts [235] reported them in mechanically compacted PS, and Berens and 1798 

Hodge [238] observed them in PVC samples that had been cold drawn to near or beyond the 1799 

yield stress, or subjected to simple powder compaction (thought to generate localized shear 1800 

stresses between the powder particles that exceeded the yield stress). Brady and Jabarin [239] 1801 

observed sub- gT  endotherms in tensile drawn PVC. Vapor- or solvent- induced swelling stresses 1802 

have also been reported to accelerate the development of sub- gT  endotherms in polymers. 1803 

Shultz and Young [240] reported such an effect for freeze-dried PS and PMMA and Berens and 1804 

Hodge [213] observed that vapor-induced swelling of PVC accelerated the development of sub-1805 

gT  peaks.  1806 
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 Very few data are available on the effects of nonthermal perturbations applied during 1807 

annealing but released before heating. Berens and Hodge [213,238] observed that vapor induced 1808 

swelling, pressure (approximately hydrostatic), and mechanical stress all decreased the rate of 1809 

annealing in PVC when applied during annealing. Chan and Paul [241] found that exposure of 1810 

BPAPC to high CO2 pressure during annealing reduced the magnitude of the annealing 1811 

endotherm.  1812 

 The results obtained to date suggest that it is the release of the nonthermal perturbations 1813 

before annealing, rather than the perturbations per se, that increases '

fT  [32]. An increase in 1814 

enthalpy following pressure release is known to occur in pressure densified PS [242] and could 1815 

well be a general phenomenon. The reduction in annealing endotherms by some form of stress 1816 

applied after annealing has sometimes been referred to as ‘rejuvenation’, and it seems likely that 1817 

this rejuvenation is caused by the increase in 
fT  induced by the application and release of stress 1818 

compensating for the decrease in 
fT  during annealing. It appears that the application and release 1819 

of nonthermal perturbations, particularly when applied to polymers, can elevate '

fT  to higher 1820 

values than those achievable by rapid thermal quenches. Thus the tendency of many materials to 1821 

produce sub- gT  endotherms after long anneals well below gT  may simply be accelerated by the 1822 

application and release of nonthermal stresses, and that nonthermal histories do not produce any 1823 

qualitatively new effects. Modeling results [32] support this hypothesis. 1824 

 1825 

6 Enthalpy Relaxation Parameters 1826 

 Opalka [112] and Moynihan et al. [113] determined the best functional forms for  t  1827 

and  , fT T  for several inorganic glasses, including B2O3 and a series of ZBLA [243] fluoride 1828 

glasses. They compared the stretched exponential and a truncated stretched exponential form for 1829 

ϕ(t), and the Davidson-Cole, log Gaussian, box and wedge distributions. For  , fT T  they 1830 

compared NM, AGL and AGF. The stretched exponential and AGF gave the best overall fits to 1831 

heat capacity data. When the fits were within or close to probable experimental uncertainty, the 1832 

NM, AGL and AGF forms for  , fT T  were indistinguishable when combined with the 1833 

stretched exponential form for φ(t). When the best fits were well outside experimental 1834 

uncertainty, the AGL and AGF forms for  , fT T  gave better fits than NM. Here we discuss 1835 

the KAHR, NM and AG phenomenologies for nonlinearity. For almost all parameterizations the 1836 

nonlinear stretched exponential decay function has been used. 1837 

 1838 

6.1 KAHR Equation 1839 

 The activation energy θ and nonlinearity parameter x have been determined for PS by 1840 

Hutchinson and Ruddy [91]. For a monodisperse sample with Mn = 330.1 10  they found 1841 

0.52   K-1 (corresponding to */h R  = 70 kK) and 0.48x  . These x and *h  values agree 1842 

within typical experimental uncertainties (about ±10% in Δh* and ±0.05 in x) with those 1843 

obtained by others using the NM equation and TN formalism (see below). Prest et al. [153] also 1844 

obtained KAHR parameters for PS and found 0.47   K-1 using curve fitting and 1.0   K-1 1845 

from the cooling rate dependence of '

fT . As discussed in Section 4.5 the reason for the large 1846 

discrepancy is not known but we note here that the curve fitting value is close to the average 1847 
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value obtained by other groups. Hutchinson et al. [244] determined θ and x for three glasses in 1848 

the AgI-AgPO3-Ag2MoO4 system. The average value of x was 0.68 and θ increased with AgI 1849 

content from 0.21 K-1 for 0% AgI to 0.31 K-1 for 50% AgI. Ingram et al. [245] reported values 1850 

of  , Δh* and x for three AgI/Ag2MoO4 glasses. By contrast with the phosphate containing 1851 

glasses the values of θ and *h  decreased and x increased with increasing AgI content. 1852 

 1853 

6.2 Narayanaswamy-Moynihan Equation 1854 

 Simple thermal histories involving only cooling and reheating were the first to be 1855 

parameterized and a large number of results have been published. Many types of material have 1856 

been studied with most classes being represented. A compilation of all published (and some 1857 

previously unpublished) NM parameters, averaged over histories that include only rate cooled 1858 

and heated glasses with small or no amounts of annealing, is given in Table 1. Examples of how 1859 

well the TN phenomenology fits experimental data for B2O2 and 5P4E are shown in Fig. 3.1860 

 Parameters for PS obtained by different groups are in good agreement for low molecular 1861 

weight monodisperse samples ( 340 10nM   ) and polydisperse samples with 385 10nM  . 1862 

Averages are */h R  = 78 ± 7 kK, x = 0.48 ± 0.06 and   =0.67 ± 0.08. The stated uncertainties 1863 

are standard deviations for the eight or nine histories for which only modest departures from 1864 

equilibrium were generated. The spreads in values for Δh*/R and x are comparable with typical 1865 

individual experimental uncertainties but the variability in   is somewhat larger. Values of 1866 

Δh*/R lying outside the range cited above were reported by Privalko et al. [246] for higher 1867 

molecular weights (101 and 110 kK for 3110 10nM    and 3233 10  respectively). The value of 1868 

Δh*/R reported by Stevens and Richardson [247] for a monodisperse sample of 336 10nM    is 1869 

higher still (125 kK) but this result was heavily weighted by a single datum at a very slow 1870 

cooling rate obtained outside the DSC. Although there is no apparent reason for questioning this 1871 

datum the remaining data lie within the DSC cooling rate range of the other experiments and are 1872 

consistent with Δh*/R = 80 kK. An increase in Δh*/R with increasing Mn for monodisperse 1873 

samples was observed by Privalko et al. [246] and Aras and Richardson [248] but the absolute 1874 

values observed by the two groups differ, particularly at lower molecular weights. The 1875 

differences are illustrated by the parameters of the equation used by Aras and Richardson to fit 1876 

their data: 1877 

 */ / nh R A B M   .         (184) 1878 

For 29 Mn values ranging between 25.16 10  and 71.5 10  Aras and Richardson obtained 1879 

103A   kK and 81.05 10B   . Fitting the Privalko data  39 233 10nM     to the same 1880 

equation yields A = 106 kK and 52.88 10B   . For 610nM   these two sets of parameters give 1881 

Δh*/R= 130 kK and 106 kK, respectively, almost the same within experimental uncertainty. For 1882 
410nM   on the other hand the values are 121 kK and 77 kK, a difference of 60% that is well 1883 

outside experimental uncertainty.  1884 

1885 
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 1886 

 1887 
 1888 

Fig. 3. Fits of TN formalism to experimental data for As2Se3 and 5P4E, using eqs. (143) and 1889 

(144). After ref. [42]. 1890 

 1891 

 1892 

If the highest Mn data of Privalko and lowest Mn data of Aras and Richardson are discarded, 1893 

leaving Mn values in the overlapping range 31 17 10nM    , the average value of Δh*/R is 79 ± 1894 

11 kK. With the high and low Mn values included Δh*/R = 83 ± 20 kK. Fictive temperature data 1895 

tabulated by Wunderlich et al. [249] for PS yield a value for Δh*/R of 78 kK, in agreement with 1896 

the averages just cited. Hodge and Huvard [177] and Hodge [130,161] found {Δh*/R = 80 kK, x 1897 

= 0.43-0.49,   = 0.68-0.74] for a polydisperse PS, and Hutchinson [96] reported (Δh*/R = 70 1898 

kK, x = 0.46,   = 0.46} for a monodisperse sample. Prest et al. [153] reported parameters for a 1899 

total of 17 thermal histories, the averages being Δh*/R = 81±14 kK, x = 0.62 ± 0.09 and β = 0.81 1900 

± 0.16. These last variabilities in Δh*/R and x are comparable with typical experimental 1901 

uncertainties but the spread in β values is substantially larger than the typical uncertainty of 1902 

±0.05, principally because some of the reported values of   were greater than 1. These all 1903 

occurred for the highest overshoots (where thermal transfer effects are greatest and the departure 1904 

from equilibrium largest), and if these histories are excluded the average becomes β = 0.74 ± 1905 

0.09. The averages and variabilities for the other parameters, after exclusion of the histories for 1906 

which 1  , are x = 0.58 ± 0.07 and Δh*/R = 66 ± 8 kK, both uncertainties being comparable 1907 

with typical experimental uncertainty. No systematic trends with thermal history or overshoot 1908 

,

N

p masC  were observed. Tsitsilianis and Mylonas [60] observed that a star PS had similar 1909 

parameters to linear PS although their value of β was obtained from a linear decay function and 1910 

is therefore unreliable (see discussion of the Scherer relations in Section 1.2.3). The PS 1911 

parameters obtained from an analysis [177] of the data of Chen and Wang [210] are inconsistent 1912 

with the values cited above. The discrepancy could arise from the relatively low annealing 1913 
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temperature used in this study although the Δh*/R parameter (175 kK) is still much larger than 1914 

the next largest value reported by Stevens and Richardson [247] (125 kK). It is possible that 1915 

larger values of Δh*/R result in some way from the low values of '

fT  induced by long aging 1916 

times [210] or very slow cools [247].  1917 

 For PVAc there is good agreement between the data of Sasabe and Moynihan [250] and 1918 

Hodge [130,161], which improves if the values of Δh*/R are forced to be equal [130] (the two 1919 

reported values of 71 and 88 kK are statistically indistinguishable at about the 60% confidence 1920 

level for typical standard deviations of ±10%). For Δh*/R = 71 kK the differences of 0.06 in 1921 

both β (0.57 and 0.51) and x (0.35 and 0.41) are close to experimental uncertainty and can 1922 

reasonably be attributed to sample differences (such as molecular weight distribution). The 1923 

values of β are in good agreement with linear dielectric values when these are extrapolated to 1924 

the same temperature [250]. However the activation energy at 304KgT   K for enthalpy 1925 

relaxation is higher than that for dielectric relaxation by a factor of 1.8.  1926 

 There is also good agreement between the best fit parameters reported for aPMMA by 1927 

Hodge [130,161] and Ribelles et al. [215] when compared for similar thermal histories. The 1928 

Ribelles group reported a thermal history dependence for their parameters but their best fit 1929 

values for one particular history agreed with the averaged set reported by Hodge that was itself 1930 

heavily weighted by a single thermal history that produced a similarly shaped sub- gT  heat 1931 

capacity peak: Hodge reported [Δh*/R = 138 kK, ln A(s) = -355.7, x = 0.22, β = 0.37], and 1932 

Ribelles et al. found (Δh*/R = 125 - 150 kK, x = 0.18 - 0.21, β = 0.33 - 0.35}. Mijovic and 1933 

coworkers [193,194] reported Δh*/R= 132 kK, in agreement with Hodge and Ribelles et al. Ott 1934 

[251] reported a lower value of Δh*/R= 60.6 kK for aPMMA. Tribone et al. [162] found Δh*/R 1935 

= 106 kK, x = 0.15 -0.40 and β = 0.35 - 0.45 for aPMMA. The difference between the Δh*/R 1936 

values of Hodge/Ribelles et al. and Tribone et al. can reasonably be attributed to the different 1937 

methods for determining it. Hodge reported that the parameter set found by him produced a 1938 

value of Δh*/R very similar to that found by Tribone et al. if it was defined in the same way 1939 

(from the heating rate dependence of gT  at fixed Qc). Avramov et al. [252] reported that the 1940 

activation energies obtained from Qh at constant Qc and from Qc at constant Qh differed 1941 

substantially, even when determined on the same sample of the same material (a bismuth 1942 

germanate). The activation energy determined from Qh was smaller than that obtained from Qc 1943 

by a factor (2.4) that was larger than, but in the same direction as, the discrepancy between the 1944 

Hodge/Ribelles et al. and Tribone et al. activation energies for aPMMA (a factor of 1.3). The 1945 

values of β obtained by Hodge, Ribelles et al. and Tribone et al. are all similar to values 1946 

obtained by linear techniques such as dielectric relaxation spectroscopy. For example β = 1947 

0.31±0.02 is estimated from the data of Ishida and Yamafuji [253] using eq. (75). By contrast 1948 

with PVAc the average enthalpic activation energies reported by Hodge, Mijovic et al. and 1949 

Ribelles et al. are somewhat smaller than the dielectric value of 155 kK at gT  = 375 K (again 1950 

estimated from the data of Ishida and Yamafuji). Tribone et al. also determined the parameters 1951 

for hydrogenated and deuterated isotactic and syndiotactic PMMA. The activation energies for 1952 

these tacticities differed substantially from that of the atactic form (see Table 1) which as 1953 

expected lay between the isotactic and syndiotactic values. No significant differences were 1954 

found between the parameters for hydrogenated and deuterated samples for any of the 1955 

tacticities. A dependence of x on thermal history and an invariance of β were observed for all 1956 

three tacticities. 1957 
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 Parameters for PVC have been reported by Hodge and Berens [152], Hodge [130,161] 1958 

and Pappin et al. [254]. Both groups used material from the same source. The exceptionally low 1959 

values for β obtained by Hodge and collaborators, 0.23-0.27 depending on details of the data 1960 

analysis, were consistent with average values extracted from the extraordinarily broad dielectric 1961 

loss peaks (which were strongly temperature dependent however). It is the lowest value of   1962 

yet reported for enthalpy relaxation. The extremely low value of β may be caused by the small 1963 

amount of crystallinity in PVC and a corresponding heterogeneous structure giving rise to a 1964 

physically significant distribution of relaxation times in addition to inherent nonexponentiality. 1965 

The value of x obtained by Hodge and Berens, 0.10-0.11, is also extraordinarily small. These x 1966 

and β parameters were determined from the behavior of sub-
gT  peaks for different histories and 1967 

did not produce a particularly good fit to the heat capacity in the glass transition region. 1968 

However the experimental uncertainties in the data were rather high, especially for data near the 1969 

minima between the sub-
gT  peak and the heat capacity rise at 

gT . Uncertainties near these 1970 

minima are determined largely by the extrapolated glassy heat capacity which for the powder 1971 

samples was quite noisy, and the rubbery heat capacity was rendered unusually uncertain by the 1972 

broad melting endotherm that almost overlaps with the glass transition. The cooling rate was 1973 

also estimated rather than controlled. Thus the relatively poor fits to the glass transition were 1974 

less significant than usual although it seems a problem does exist. Pappin et al. [254] reported x 1975 

= 0.27 (almost three times larger than the Hodge and Berens value) and Δh*/R = 135 kK (65% 1976 

lower than the value 225 kK found by Hodge and Berens). Ott [251] reported an intermediate 1977 

value of Δh*/R = 168 kK for PVC. The origin of the discrepancies, particularly in Δh* obtained 1978 

from integrated heat capacities, is not known but is conceivably due to experimental 1979 

uncertainties that are larger than claimed by both groups. There are also possible differences in 1980 

sample crystallinities due to different stabilization protocols above gT  before cooling [195], and 1981 

differences in  peC T  could also have arisen from different assessments of the melting 1982 

endotherm. Crystallinity has been reported to affect the amorphous phase [255,256] and as 1983 

noted above could affect the   parameter. The difference in x cannot be ascribed to the 1984 

different values of Δh*, however, because the values of xΔh*/R are very different, ~36 kK for 1985 

Pappin et al. [254] and 25 kK for Hodge and Berens [152]. 1986 

 For BPAPC Hodge [130,161] reported Δh*/R = 150 kK, x = 0.19 and β = 0.46. Except 1987 

for   these parameters are similar to those reported by the same author for aPMMA. The value 1988 

of β is about 0.10 larger than that of PMMA and this difference probably accounts for the 1989 

infrequent observation of sub- gT  endotherms in BPAPC. Ott [251] reported Δh*/R = 207 kK for 1990 

BPAPC. 1991 

 The values of Δh*/R for inorganic glasses such as B2O3 [86,160], As2Se3 [257], 1992 

Ca/K/NO3 [258], NaKSi3O7 [259], NBS 710 (a soda-lime-silicate) [129,141] and lead silicate 1993 

(NBS 711) [260], are generally smaller than those observed for polymers and the values of x and 1994 

β are generally larger (see Table 1). The parameters for the monomeric organic material 5P2E 1995 

[42,261] are similar to those of the inorganics. Three materials stand apart from this trend 1996 

however. The parameters for polystyrene are similar to those observed for many inorganics 1997 

while those for a series of inorganic ZBLA fluoride glasses [243] and lithium acetate (LiAc) are 1998 

similar to those for polymers. The parameters for LiAc are very uncertain however because of 1999 

the inability to obtain an independent value of Δh*/R (the samples crystallized at slow cooling 2000 

rates). For alkali, mixed alkali and lead silicates [259,260] the values of x (0.65-0.70) are much 2001 
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higher than for any other material but the values for Δh*/R and β are not unusual. Enthalpic 2002 

values of β cannot be compared with dielectric values for many inorganics because of the high 2003 

conductivity of the latter, although Moynihan et al. [42] compared enthalpy, volume, strain and 2004 

stress relaxation parameters for 5P2E, B2O3, As2Se3 and a mixed alkali silicate. They found that 2005 

the values of   for different relaxation properties were, with a couple of exceptions, within the 2006 

typical uncertainty of ±0.05. Activation energies generally agreed to within 10% with the largest 2007 

difference being 20%. There is excellent agreement between the parameters for B2O3 obtained 2008 

by Sales [86] and DeBolt et al. [160].  2009 

 Hofer et al. [218] reported parameters for aqueous solutions of ethylene glycol (22 2010 

mol%) and lithium chloride (16 mol%), both in the bulk and imbibed in poly(hydroxyethyl 2011 

methacrylate) (PHEMA) as a hydrogel. The x parameters changed somewhat with thermal 2012 

history but the values of Δh*/R and averaged x for the bulk and hydrogel materials were the 2013 

same within uncertainties. The values of β changed less with history but their averages were 2014 

substantially smaller for the solutions imbibed in PHEMA than for the bulk:   decreased from 2015 

0.64 to 0.39 for ethylene glycol and from 0.93 to 0.68 for lithium chloride.  2016 

 As noted in the Introduction the values of 2*/ gh RT    are similar for a wide variety of 2017 

materials, generally being of the order of unity for polymers and 0.1 for inorganics. The average 2018 

and standard deviation for all materials listed in Table 1 are 0.57 ± 0.32.  2019 

 The enthalpic activation energies for inorganics are for the most part the same as those 2020 

determined from viscosity data above gT . An exception to this occurs for the ZBLA glasses for 2021 

which the enthalpic activation energy is 40% larger than the average of two viscosity 2022 

measurements [112,113].  2023 

 Hodge [161] reported correlations between all four TN parameters for all materials 2024 

analyzed up to that time and these correlations have been confirmed in more recent compilations 2025 

[130,133]. Low values of Δh*/R are associated with high values of x and   and high values of 2026 

Δh*/R are found with low values of x and β. They have been rationalized in terms of the Adam-2027 

Gibbs phenomenology, discussed next. 2028 

 2029 

6.3 Adam-Gibbs-Fulcher (AGF) Equation 2030 

 This equation has been discussed in Section 2.3.3. It was noted in that section that the 2031 

accuracy of eqs. (110) and (112) - (116) relating the AGF parameters Q and 2T  to the NM 2032 

parameters x and Δh* has been established by Hodge [130], Opalka [112], Moynihan et al. 2033 

[113], Scherer [129], Sales [86], and Ribelles et al. [215]. Thus the AGF nonlinearity parameters 2034 

for materials subjected only to NM analyses can be estimated with some confidence. This 2035 

confidence is reinforced by the finding that the β parameter is the same within uncertainties for 2036 

both NM and AGF analyses, where these have been performed on the same materials and for the 2037 

same thermal histories. Published AGF parameters are summarized in Table 2 together with 2038 

values of the parameters KT  and 0T  where these are known.  2039 

 In assessing the AGF formalism we consider first the quality of fits relative to NM. 2040 

Following this we discuss the parameter 2T  and its relation to the Kauzmann temperature KT  2041 

and to the VTF temperature 0T  obtained from linear relaxation data above gT  (most often 2042 

dielectric). Enthalpic activation energies are then compared with values obtained by dielectric 2043 
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and other linear relaxation techniques, followed by a discussion of the ‘primary’ activation 2044 

energy Δμ.  2045 

 The goodness of fits afforded by AGF is comparable with that given by NM although 2046 

modest improvements of AGF fits over those of NM have been reported by Hodge for PS [130], 2047 

Opalka and coworkers for some ZBLA glasses [112,113], and Ribelles et al. for a-PMMA 2048 

[215]. A comparison of the NM, AGL and AGF best fits to atactic PMMA, for a single thermal 2049 

history that produces a heat capacity peak in the middle of the glass transition range, is shown in 2050 

Fig. 4. Because of the similarity in fits almost none of the fitting problems found for NM are 2051 

significantly improved by the AGF formalism. The advantages of AGF are restricted to the 2052 

physical significance of its parameters and its ability to rationalize the correlations observed 2053 

between the NM and   parameters. The reasons for the similarity in fitting quality of the NM 2054 

and AGF equations have been discussed by Moynihan et al. [113]. They observed that the ratio 2055 

of nonlinear to linear retardation times at temperature T is approximately proportional to the 2056 

departure from equilibrium  fT T  for both NM and AGF expressions. For NM 2057 
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 The AGF derived values of 2T  are within 1 K of KT  for the inorganic materials B2O3 and 2061 

As2Se3. This agreement is unusually significant both because ΔCp(T) for these materials closely 2062 

follows the hyperbolic form of eq. (55) from which the AGF equation is derived and because the 2063 

values of KT  are particularly reliable. The agreement for B2O3 is significant in another regard. It 2064 

has been a long standing puzzle why the viscosity of B2O3 becomes Arrhenius slightly above 2065 

gT , in contrast with the VTF behavior of enthalpy relaxation indicated by the equality of 2T  and 2066 

KT . Angell [2l,262] has argued that the processes responsible for viscosity at temperatures just 2067 

above gT  can decouple from the longer time processes probed by enthalpy relaxation. The AGF 2068 

enthalpy relaxation parameters for B2O3 support this view.  2069 

 For aPMMA Hodge [130] reported 2T  = 325 K. A Kauzmann temperature cannot be 2070 

calculated for the uncrystallizable atactic polymer of course but a value of 285 K has been 2071 

estimated for isotactic PMMA by O’Reilly et al. [263]. The measured values of  pC T  are the 2072 

same for isotactic and atactic PMMA [263] so the difference in KT  is the same as the difference 2073 

in gT  if the residual entropies at gT  are assumed to be equal. For iPMMA gT  = 325 K, KT  = 285 2074 

K and Tg - T2 = 40 K. Thus, 40 335K gT T    K is estimated for aPMMA. This value for KT  is 2075 

equal to the T2 value reported by Hodge [130] within experimental and computational 2076 

uncertainties. For PS Hodge [130] found 2T  = 210 K, substantially lower than the values for KT  2077 

obtained by Karasz et al. [264] (280 ± 15 K) and by Miller [265] (260 ± 15 K). This discrepancy 2078 

is the best documented failure of the AGF formalism to date both because of the relatively large 2079 

number of published enthalpy relaxation parameters for PS and because of the reliable estimates 2080 
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of 
KT . The cause of the discrepancy is unknown. Curiously however the value of 

2T  = 260 K 2081 

estimated from the anomalous NM parameters obtained from the Chen and Wang data [130] 2082 

agrees very well with 
KT . The AGF value of 

2T  for BPAPC (325 K) is substantially above 
KT  2083 

(220 K) but since this value of 
KT  is almost 200 K below 

gT  [85] there is reason to doubt its 2084 

reliability. It is possible that the Kauzmann analysis could be compromised by the parameters 2085 

used to define  pC T , which as noted above (Section 1.3.4) predict ΔCp = 0 near the melting 2086 

point. Moynihan et al. [113] obtained AGF parameters for glycerol and propylene glycol.  2087 

 2088 

 2089 
 2090 

Fig. 4. Fits of NM (eq. (88)), AGL (eq. (108)) and AGF (eq. (109)) expressions for  , fT T  to 2091 

data for atactic poly(methylmethacrylate). After ref. [130]. 2092 

 2093 

 2094 

Their averaged AGF parameters for glycerol were in excellent agreement with the ac 2095 

calorimetry data of Birge and Nagel [100,l01] but the stretched exponential parameters were 2096 

very different. The AGF parameters changed systematically with cooling rate at fixed heating 2097 

rate for simple rate scans without annealing and the authors concluded, as have other 2098 

investigators, that the phenomenology is deficient, probably in the way nonlinearity is handled. 2099 

In cases where KT  is unavailable it is of interest to compare 2T  with the VTF 0T  parameter 2100 

obtained from linear relaxation data above gT . Part of this interest arises from the possible 2101 

decoupling of enthalpy (and volume) relaxation from viscosity, diffusion, dielectric, viscoelastic 2102 

or other dynamic processes, suggested by Angell [20,21,262] and discussed for B2O3 above.  2103 

 Such decoupling manifests itself as differences in 0T  or 2T  for different processes. For 2104 

PVAc the enthalpic value of 2T = 182 K obtained from the data of Sasabe and Moynihan [250] 2105 

is less than 0T  = 238 K obtained dielectrically by the same investigators on the same sample.  2106 

2107 
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TABLE TWO 2108 

Adam-Gibbs-Fulcher Parameters 2109 

Material Q (kK) T2(K) β -lnA (s) [Ref]a 

AGF 

TK (K) 

[ref] 

T0 (K) 

[ref] 

PVAc 6.23 225 0.55 66.60 [130]  238[250] 

PVC 2.61 320 0.28 59.74 [130] 290[130] 350[266] 

BPAPC 7.03 325 0.54 70.30 [130] (220)[85]  

PS 17.1 210 0.74 100.3 [130] 260[265]  

      280[264]  

aPMMA 3.43 325 0.34 55.45 [130] 335[263] 222[253] 

B2O3 11.6 321 0.65 25.68 [113,260] 335[65] 402[65] 

As2Se3 9.82 237 0.67 43.10 [130] 236[203]  

5P2E 6.16 147 0.70 63.00 [130]   

40Ca(NO3)2 

-60KNO3 

6.73 238 0.46 62.90 [130]   

Na/K 

silicate 

24.0 222 0.66 46.30 [130]   

NBS711b 18.9 248 0.67 34.95 [260]   

NBS710c 8.06 494 0.63 32.83 [260]   

ZBLA 5.96 525 0.50 53.00 [130]   

 12.5 425 0.46 61.38 [113]   

Glycerold 2.18 134 0.51 34.20 [113] 135[64] 132[65] 

Glycerole 3.37 120 0.51 43.41 [113]   

LiAc 5.8 335 0.56 - [133] 370[62]  

yPbO. 

(1-y)P2O5 

13-19 150- 

350 

0.49- 

0.77 

23.7- 

69.2 

[86]   

xFe2O3. 

(1-x)Pb(PO3)2) 

19-25 300- 

420 

0.60- 

0.68 

53.7- 

69.3 

[86]   

a Parameters obtained directly using the AGF eq. (109) for  0 , fT T  2110 

b Lead silicate. 2111 
c Soda-lime-silicate. 2112 
d Qh = 5 K min-1. 2113 
e Qc = 20 K min-1 2114 

 2115 

 2116 

On the other hand the enthalpic 2T  value obtained by Hodge [130] for a different sample of 2117 

PVAc (227 K) agrees well with the dielectric 0T . Bearing in mind the uncertainties in both 2T  2118 

and 0T  associated with fitting the AGF and VTF equations the two values are probably 2119 

statistically indistinguishable. 2120 
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 For PVC a least squares analysis of the dielectric data of Ishida [266] shown in ref. [267] 2121 

produces a good VTF fit with B = 290 K and 
0T  = 351 K. The value for 

0T  is larger than the 2122 

enthalpic value for 
2T  of 320 K estimated by Hodge [130], but forcing 

0T  = 
2T  = 320 K 2123 

produces a fit almost as good as the best fit (see discussion of VTF parameter uncertainties in 2124 

Section 1.2.1). Both values far exceed the value for 
2T  of 193 K estimated from the NM 2125 

parameters obtained by Pappin et al. [254]. An approximate value of 
KT  = 290 ± 20 K has been 2126 

reported by Hodge for PVC [130] using the calorimetric data of Gouinlock [268] but requiring 2127 

uncertain corrections for crystallinity and syndiotacticity. This value for 
KT  agrees with 

2T  2128 

within the (considerable) uncertainties in each. For aPMMA analysis of the dielectric data of 2129 

Ishida and Yamafuji [253] yields 
0T  = 222 K, considerably below both the enthalpic value 

2T  = 2130 

325 K cited by Hodge and the estimated Kauzmann temperature of 290 K cited above. It is 2131 

possible that this difference reflects a decoupling of the dielectrically active relaxation processes 2132 

from the broader more inclusive enthalpic processes, similar to that proposed for the viscosity of 2133 

B2O3. 2134 

 Estimates of the ‘primary’ activation energy Δμ have been published for polymers by 2135 

Hodge [130,133]. The numerical factor relating Δμ to the AGF parameter Q contains the 2136 

minimal entropy sc* and the heat capacity change at gT  (or 2T ), both of which depend on mass. 2137 

Using the Wunderlich bead as the mass unit and putting * ln 2c Bs k  and * ln3!c Bs k  yields 2138 

values for / Bk  in the range 3.6 - l8 kK (for * ln 2c Bs k ) and 1.4-7.0 kK (for * ln3!c Bs k ). 2139 

The values for sc* = kB ln 3! are comparable with rotational energy barriers. The rationale for 2140 

choosing sc* = kB ln 3! was that three chain segments are involved in crankshaft motions and 2141 

that these motions are reasonable candidates for the localized rearrangements involving the 2142 

smallest number of chain segments. Thus the AGF Q parameters are consistent with 2143 

intersegmental rotational energy barriers being the primary excitation barrier for cooperative 2144 

motions near gT  for polymers. For inorganic glasses Scherer [129], Opalka [112] and Moynihan 2145 

et al. [164] obtained sensible values of Δμ comparable with bond energies, assuming 2146 
* ln 2c Bs k . 2147 

 Sales [86] studied a series of lead and iron phosphate glasses in which the number of 2148 

non-bridging oxygens per PO4 tetrahedron was varied systematically by changing chemical 2149 

composition. The AGF equation was used to analyze structural relaxation in the glass transition 2150 

for histories without annealing. This work is particularly revealing because of the detailed 2151 

correlation it establishes between the AGF parameters and well defined chemical and structural 2152 

changes. As already noted (Section 6.3) Sales found that eq. (114) relating the AGF parameter 2153 

Q and NM parameter Δh*/R was a good approximation for all materials studied. The AGF 2154 

equation could be well justified for these materials because of the approximate equivalency of 2155 

the hyperbolic and linear forms for pC  (Section 1.3.4). The NM activation energy Δh* 2156 

increased smoothly with the number of non-bridging oxygens (defined as Q by Sales but 2157 

referred to here as R to avoid confusion with the AGF parameter). The increase was due largely 2158 

to changes in the ratio 2 / gT T  and was accompanied by an increase in ΔCp(Tg), consistent with 2159 

Angell’s ‘fragility’ increasing with R (Section 6.5). The product *

cs  was independent of 2160 

composition except for the most iron rich glasses. Assuming   to be determined by the P-O 2161 
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chemical bond energy that is independent of composition (about 100 kcal mol-1) the estimated 2162 

value of W* that determines *

cs  (eq. (102)) was found to be about 4.6, or 22.2. Both W* and 2163 

2/gT T  increased with increasing iron content which was interpreted in terms of different 2164 

coordination numbers and geometries for the Fe3+ and Pb2+ cations. It was suggested that the 2165 

structural constraints imposed by the crystal field stabilized octahedral Fe3+ moieties increased 2166 

the values of both *

cs  and 
2/gT T  compared with the less geometrically constrained Pb2+ 2167 

species. As discussed below in Section 6.5 with regard to the NM parameter correlations the 2168 

increases in both *

cs  and 2/gT T  are consistent with the idea that  , and possibly *

cs , 2169 

determine the ratio 2/gT T . The values of   did not exhibit any significant variation with R. 2170 

Further interesting speculations about the relationship between coordination number and 2171 

geometry, the pre-exponential factor, strong and fragile behavior and viscosity above 
gT  can be 2172 

found in the original paper [86]. 2173 

 2174 

6.4 AC Calorimetry 2175 

 This experimental technique has been described in Section 2.2 Real and imaginary 2176 

components of the complex heat capacity *

pC  are obtained as a function of temperature and 2177 

frequency, and it is found that the temperature dependences of the fixed frequency real 2178 

component resemble the heat capacity scans during cooling observable with some DSC 2179 

instruments. As with other linear relaxation techniques stretched exponential (or other 2180 

functional) parameters can be obtained from the real and imaginary components (e.g., by  2181 

applying eqs. (75) or (82) to the loss peaks), and VTF parameters can be obtained from the 2182 

temperature dependence of the position of the peak in the imaginary component or of the 2183 

relaxation time obtained from stretched exponential fits. It is of considerable interest and  2184 

importance to compare the linear parameters obtained by ac calorimetry with the nonlinear 2185 

parameters obtained by scanning calorimetry on the same materials. Unfortunately ac 2186 

calorimetry has so far been applied to only three materials: propylene glycol [101], glycerol 2187 

[101,102], and orthoterphenyl/orthophenyl-phenol mixtures [269-271]. The linear relaxation 2188 

parameters for these materials are collected in Table 3. AC calorimetric and nonlinear DSC 2189 

enthalpy relaxation parameters have been directly compared only for glycerol [113] and the 2190 

nonlinear AGF parameters for this material from Table 2 are included in Table 3 for 2191 

convenience. Excellent agreement between the linear VTF and nonlinear AGF parameters is 2192 

observed but the stretched exponential parameter β is significantly different for the two 2193 

techniques. It is curious that the discrepancy lies in the nonexponentiality which is believed to 2194 

be well described, rather than in the description of nonlinear behavior about which doubts are 2195 

mounting. The discrepancy in β could perhaps be caused by a frequency dependent thermal 2196 

conductivity     since the stretched exponential was fitted to    pC     rather than 2197 

 pC   (Section 2.2). Such a frequency dependence would not have to be very strong to modify 2198 

the shape of the real and imaginary components from which β is found but could be sufficiently 2199 

weak that the peak frequency in "

pC  and the retardation time are not significantly affected, 2200 

therefore accounting for the agreement in VTF parameters. However   has been found to be 2201 

independent of frequency for o-terphenyl and its mixtures [269].  2202 

2203 
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TABLE THREE 2204 

AC Calorimetry Parameters 2205 

Material β -log10A T0 (K) B (K) Ref. Comment 

Glycerol 0.65±0.03 14.6±0.9 128±5 2500±300 [100,101]  

(Nonlinear AGF) 0.505 18.85 120 3372 [113] 5 K min-1 

 0.510 14.85 134 2179 [113] 20 K min-1 

Propylene 

Glycol 

0.61±0.04 13.8±0.4 114±7 2020±130 [100]  

 
      

OTP1-x-OPPx 
a      

x = 0 (extrap)    184±13 [269]  

x = 0.09   18.7±1.3 117±6 3175±320 [269]  

x = 0.16   16.9±2.1 186±12 2397±590 [269]  

x = 0.22   20.2±2.3 172±13 3436±820 [269]  

x = 0.33   22.2±2.8 164±14 4145±900 [269]  
a OTP, o-terphenyl; OPP, o-phenylphenol. 2206 
b Temperature dependent:  0.81 425 / KT    . 2207 

 2208 

 2209 

 For o-terphenyl the ac calorimetric value of 0T  (184 ± 13 K by extrapolation) agrees 2210 

with KT  (200 ±11 K) [272]. For glycerol the linear ac calorimetric and nonlinear AGF values of 2211 

0T  (128 ± 5) and 2T  (127 ± 7 K) also agree with KT  (135 ± 3 K) [64]. The stretched exponential 2212 

parameter β is independent of temperature for glycerol and propylene glycol but is strongly 2213 

temperature dependent for o-terphenyl. Extrapolation of the latter trend [269] indicates that β 2214 

would be zero at or near KT  and 0T . The stretched exponential β parameters for glycerol and 2215 

propylene glycol obtained calorimetrically are smaller by about 0.15 than the dielectric values 2216 

[103]. 2217 

 2218 

6.5 Parameter Correlations 2219 

 Strong correlations between β, x and Δh* have been reported by Hodge [130,133] and 2220 

were rationalized in terms of the AGF phenomenology. Major conclusions from this work are 2221 

that the correlations can be consistently mapped onto the classification of strong and fragile 2222 

behavior in liquids advocated by Angell [5,20,21,62] (the origins of which can be traced to the 2223 

work of Laughlin and Uhlmann [123]), and that a high degree of nonlinearity is associated with 2224 

fragile liquid behavior. The mapping arises from (i) the link between nonlinearity and the ratio 2225 

2/gT T  (eqs. (113) and (116)), (ii) the VTF result that deviations from Arrhenius behavior 2226 

increase with decreasing 2/gT T  (eq. (114)), and (iii) the fact that the strong and fragile 2227 

classification rests on /gT T  as a scaling variable. If it is hypothesized that Δμ determines the 2228 

ratio 2/gT T , i.e. that a high primary activation energy prevents gT  from approaching 2T , it can 2229 

be shown that xΔh* is approximately constant: 2230 
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/
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R x R


     .        (188) 2232 

Equation (188) is consistent with the experimental observation that xΔh* is relatively constant 2233 

compared with Δh* alone (see Table 1). However it has been noted by Angell [21] that the VTF 2234 

equation implies that Q and 
0 2/ / /g g g KT T T T T T   should be linearly related if the pre-2235 

exponential factor and the relaxation time at gT  are material independent. For hydrogen bonded 2236 

materials Angell found 0 0/ 1.0 0.0255 /gT T Q T  , consistent with 0 2g KT T T T    when 2237 

0Q  . On the other hand the assumption that Δμ determines 
2/gT T  could also be regarded as 2238 

being vindicated by the correct prediction that  gT  is relatively constant for different 2239 

materials. Angell [5,20,21,83] has also argued that the thermodynamic contribution  p gC T  to 2240 

the AG Q parameter as well as the kinetic factor   are both important in determining liquid 2241 

state dynamics. Thus the assumption that Δμ is the dominant factor may only be valid for 2242 

similar classes of material, and this would be consistent with the separate correlations observed 2243 

for different classes of materials discussed below. On the other hand it can also be argued that 2244 

the thermodynamic factor ΔCp would be more consistently assessed at the thermodynamic 2245 

temperature KT  rather than the kinetically determined gT , although this would require longer 2246 

extrapolations and introduce additional uncertainties. One analysis [83] has suggested that using 2247 

 p gC T  can generate spurious discrepancies.  2248 

 If  p gC T  is assumed constant rather than  2pC T  the proportionality constant 2249 

between Q and Δμ and the relation between Q and Δh* are both modified. Inserting 2250 

2' /gC C T T  (eq. (55)) into eq. (105) for Q yields 2251 

   *

2/ ' /A c B gQ N s k C T T             (189) 2252 

 2' / gQ T T             (190) 2253 

so that 2254 

 2' /gQ Q T T            (191) 2255 

     
2

2

* gTx h

R T

 
  

 
          (192) 2256 

     
 

2 *

1

x h

R x





.           (193) 2257 

Equation (193) is identical to eq. (110) obtained from constantpC C   . 2258 

 When  
1'

2/ 1fT T x


   is plotted against 2 */Q x h R   [133] linear relations consistent 2259 

with eqs. eq. (187) are observed Separate correlation lines are observed for different classes of 2260 

materials corresponding to different groupings of constant xΔh*, suggesting that K2 of eqs. 2261 

(187) and (188) depends on material type. These correlations are shown in Fig. 5. The separate 2262 
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correlation lines could be due to the dependence of 
pC  on the class of material discussed 2263 

above, or to a variable *

cs  as in the iron rich phosphate glasses studied by Sales [86]. These 2264 

separate correlation lines must be regarded as provisional however since the correlations for 2265 

different material types degrade into an uncorrelated broad scatter if '

2/fT T  is plotted against 2266 

 2' * 1Q x h R x     . 2267 

 2268 

Fig. 5. Correlation between 2/gT T  and AGF parameter B (equal to Q of eq. (109)). After ref. 2269 

[133]. 2270 

 2271 

 The stretched exponential parameter β also correlates with x and 2/gT T . The correlation 2272 

between x and β is shown in Fig. 6. Hodge [133] used the long standing idea, based on the 2273 

Adam-Gibbs concept of increasing size of relaxing groups and increasing cooperativity with 2274 

decreasing temperature, to suggest that β should approach 1.0 in the limit  '

2/ 1.0fT T x   2275 

and tend to zero as  '

2 0fT T x  . A simple functional relation that satisfies these limits and 2276 

which is consistent with the approximately linear correlation observed between x and β is 2277 
'

2 1 1

fT

T x

A B


 

 
.           (194) 2278 

As already noted independent experimental evidence for 0   as 2T T  exists for o-2279 

terphenyl and salol [269]. Two objections to eq. (194) have been raised however. First, although 2280 

its equilibrium form fT T  is consistent with the strong temperature dependence of β observed 2281 

in many (but not all) materials (the o-terphenyl mixtures observed by Dixon and Nagel [269] for 2282 

example), it is inconsistent with the TN assumption that β is constant. This criticism can be 2283 

countered by appealing to the same reasoning used to explain the success of the generalized 2284 
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Arrhenius NM equation (Section 3.2.1), namely that the range in thermodynamic and fictive 2285 

temperatures over which relaxation occurs in a DSC scan is sufficiently small that β can be well 2286 

approximated as being constant. A second objection [273] is that eq. (194) is inconsistent for the 2287 

many other materials for which the linear values of β are constant (glycerol and propylene 2288 

glycol, for example [103]). In particular, the generally lower values of x for polymers implies a 2289 

stronger temperature dependence for z* and therefore of β yet β is generally less temperature 2290 

dependent for polymers than for monomeric glasses. However the temperature dependence of z* 2291 

from which eq. (194) is derived is weaker for 
gT T  than for 

gT T . Also, the range in 
2/fT T  2292 

over which significant changes in enthalpic β values occur (~ 1.11 - 2.5) is much larger than the 2293 

typical ranges in 2/T T  over which linear data are acquired. Independent support for eq. (194) 2294 

has come from recent work by Moynihan and Schoeder [274] who described light scattering 2295 

evidence for nanoscale inhomogeneities in glass forming liquids that relax at different rates. 2296 

They suggested that this could be the source of nonexponentiality. Expressions relating the 2297 

nonlinearity parameters to the size of these regions were derived and the predicted sizes of the 2298 

inhomogeneities were shown to be in excellent agreement with those determined by other 2299 

methods. In this interpretation the physical significance of nonexponentiality lies in the 2300 

distribution of retardation times associated with the inhomogeneities rather than the inherent 2301 

nonexponentiality of cooperative or collective molecular motions. A temperature dependent β is 2302 

predicted that is consistent with β approaching zero as 2T T . 2303 

 Exceptions to eq. (194) nevertheless occur. For bulk and hydrogel imbibed aqueous 2304 

ethylene glycol (EG) and LiCl solutions [218] the value of β is much smaller for the solutions in 2305 

gel than in the bulk but the corresponding values of x and 2/gT T  are very similar. The lower 2306 

values of β for the solutions imbibed in gel support the interpretation of a low β as originating 2307 

from a heterogeneous environment in the hydrogels rather than from increased cooperativity, if 2308 

it is assumed that these different environments have similar nonlinear characteristics. Sales [86] 2309 

observed that β was independent of composition in a series of phosphate glasses for which 2310 

2/gT T  changed systematically. The silicate glasses are also exceptional in having by far the 2311 

largest values of x and 2/gT T  for any material, but normal values of β. The large values of 2312 

2/gT T  can reasonably be attributed to high values of Δμ associated with the breaking of a 2313 

covalent bond [275], and the relatively normal values of β can be attributed to the fact that, once 2314 

the chemical bond is broken, geometric constraints make further relaxation normally 2315 

cooperative. Thus the unusually tight three dimensional network structure of silicates may be 2316 

the reason for their exceptional enthalpy relaxation parameters. 2317 

 2318 

7 Summary and Future Considerations 2319 

 The current phenomenologies give good to excellent descriptions of enthalpy relaxation 2320 

near equilibrium. For many (perhaps most) engineering applications, such as those discussed in 2321 

Scherer’s book [9], they appear to be adequate. The Adam-Gibbs phenomenology provides 2322 

valuable insights into the physical origin of nonlinearity. It establishes a link between 2323 

nonlinearity and Angell’s strong/fragile classification of liquid behavior, between nonlinearity 2324 

and the Kauzmann paradox, and provides a plausible rationalization of the correlations observed 2325 

between the NM parameters. As with the empirical NM and KAHR equations, however, Adam-2326 

Gibbs does not provide a satisfactory description of relaxation far from equilibrium. Resolution 2327 
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of the failure of these formalisms must be counted among the most important goals of future 2328 

research.  2329 

 2330 

 2331 
Fig. 6. Correlation of NM parameter x with nonexponentiality parameter  . After ref. [133]. 2332 

 2333 

 2334 

 Moynihan [276] has attempted to modify the phenomenology in several ways to improve 2335 

the quality of fits, without success. The attempted modifications were as follows: 2336 

(1) Make i  in    exp / it t    depend partly on fiT  in addition to its dependence on 2337 

the global fT  (in KAHR terms making i  a function of both i  and i i

i

g  : 2338 

    
0

( )

1 * 1 1 **
expi i

f avg fi

y x h y x hx h

RT RT RT
 

     
   

  

.     (195) 2339 

No improvement was observed (best fits were obtained with y = 1). 2340 

(2) Add a tail to the stretched exponential decay function: 2341 

     2ln ln ln /KWWg g K C    .        (196) 2342 

Best fits were obtained when K = 0, i.e. when  ig   was the stretched exponential distribution. 2343 

(3) Abandon thermorheological simplicity by making β depend on T or fT . The introduction 2344 

of such dependences did not improve the situation, presumably because the range in T and fT  2345 

over the glass transition is too small to significantly affect β (Section 6.5). 2346 

(4) Change the form of the nonlinearity expression to make it more sensitive to fT T : 2347 
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No improvement was found. 2349 

 Ritland [11] also suggested a modification to  , fT T , 2350 

 / /
N

f f fdT dt T T k T T      ,        (198) 2351 

which was evaluated by Scherer [154] for volume relaxation in a Na/Ca/SiO2 glass. Scherer 2352 

found improved fits at large departures from equilibrium using 131.0 10k    and N = 7, 2353 

corresponding to a modification of only one part in 610  in /fdT dt  for 10fT T   K. Scherer 2354 

also noted that the stretched exponential parameter β decreased at smaller reduced times but that 2355 

although incorporating this into the calculation improved most of the fits not all of the data 2356 

could be described within uncertainties. Gupta and Huang [199] also noted a failure in the TN 2357 

phenomenology for rapidly quenched silicate fibers that were far from equilibrium, although 2358 

satisfactory fits could be made to slowly cooled bulk and fiber data obtained relatively close to 2359 

equilibrium. Rekhson and Ducroux [277] have described a phenomenology based on the AGF 2360 

equations in which a distribution in (Qi) is assumed. The fastest time constants in  ln ig   are 2361 

characterized by the smallest Qi. These authors showed that this phenomenology removed the 2362 

inconsistencies observed by Scherer. 2363 

 Since none of the modifications listed above allow all histories to be fit with a single set 2364 

of parameters it seems that a more fundamental change in the phenomenology is needed. 2365 

However any modification must converge to the present phenomenology in the limit of small 2366 

departures from equilibrium because the current methods for describing nonlinearity are 2367 

consistent with behavior seen near gT . The search for a new phenomenology is made 2368 

particularly challenging by the fact that a rigorous theoretical derivation of nonlinearity, and of 2369 

the glass transition in general, is not yet in sight. The heuristic Adam-Gibbs approach is 2370 

probably still the best account available. 2371 

 A more modest short term goal is to parameterize more materials in more detail. The 2372 

validity of the correlations between x, Δh* and β needs to be tested for many more material 2373 

types. More systematic studies of the type made by Sales [86] for lead and iron phosphate 2374 

glasses need to be made, and the relationship between the AGF T2, VTF 0T , and Kauzmann KT  2375 

temperatures needs to be better defined. For polymers the effects of crystallinity and 2376 

crosslinking density need further exploration. 2377 

 A rigorous and fully satisfactory account of experimental thermal transfer effects has not 2378 

yet been given. Although the data of O’Reilly and Hodge [89] at very slow heating rates 2379 

indicate that thermal transfer cannot account for all the observed fitting problems, a standard 2380 

and rigorous procedure for correcting for thermal transfer is needed. To date only Hutchinson 2381 

and coworkers [90,91] have explicitly addressed this issue. 2382 

 Despite the fact that enthalpy relaxation should now be considered to be a standard 2383 

experimental technique its inherent nonlinearity is too often not fully appreciated, or is 2384 

incorrectly handled, by too many practitioners. There are too many literature reports that contain 2385 

incorrect data analyses. It is to be hoped that this situation will improve and that the field will 2386 

continue to advance in the future. 2387 

 It is a pleasure to thank J.M. O’Reilly, W.M. Prest Jr. and A.J. Kovacs for valuable and 2388 
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